L(s) = 1 | + (0.5 − 0.866i)3-s − 1.73i·5-s + (2.36 − 1.36i)7-s + (−0.499 − 0.866i)9-s + (−2.36 − 1.36i)11-s + (−2.59 + 2.5i)13-s + (−1.49 − 0.866i)15-s + (−0.133 − 0.232i)17-s + (4.09 − 2.36i)19-s − 2.73i·21-s + (4.09 − 7.09i)23-s + 2.00·25-s − 0.999·27-s + (−3.96 + 6.86i)29-s + 1.46i·31-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s − 0.774i·5-s + (0.894 − 0.516i)7-s + (−0.166 − 0.288i)9-s + (−0.713 − 0.411i)11-s + (−0.720 + 0.693i)13-s + (−0.387 − 0.223i)15-s + (−0.0324 − 0.0562i)17-s + (0.940 − 0.542i)19-s − 0.596i·21-s + (0.854 − 1.48i)23-s + 0.400·25-s − 0.192·27-s + (−0.736 + 1.27i)29-s + 0.262i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.14696 - 0.885954i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.14696 - 0.885954i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (2.59 - 2.5i)T \) |
good | 5 | \( 1 + 1.73iT - 5T^{2} \) |
| 7 | \( 1 + (-2.36 + 1.36i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.36 + 1.36i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (0.133 + 0.232i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.09 + 2.36i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.09 + 7.09i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.96 - 6.86i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 1.46iT - 31T^{2} \) |
| 37 | \( 1 + (1.33 + 0.767i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.33 - 2.5i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.09 - 10.5i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 3.26iT - 47T^{2} \) |
| 53 | \( 1 + 7.92T + 53T^{2} \) |
| 59 | \( 1 + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.13 - 5.42i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.56 - 4.36i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (1.90 - 1.09i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 9.19iT - 73T^{2} \) |
| 79 | \( 1 + 8.39T + 79T^{2} \) |
| 83 | \( 1 - 1.66iT - 83T^{2} \) |
| 89 | \( 1 + (-8.19 - 4.73i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-8.66 + 5i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.46099924505543795128246299006, −10.73265660904626181888078084806, −9.381647637432627623178919736172, −8.597216263978138746535577532523, −7.68293681740288811376459245284, −6.84720356521247915658918832811, −5.26065510594354946772223595414, −4.52207681409553391408178808332, −2.75927663984589777926092830469, −1.14072775553396600938989915699,
2.24902829932421009545389787883, 3.40098885423237615343708825974, 4.93386284376979485275501501964, 5.68838040704008281169977780597, 7.39828777306652560919909187597, 7.87062211457166473083539087130, 9.195822822265148108804798509575, 10.03395778297548306140089597367, 10.91175525524969068327761210202, 11.67186455309041888887633868341