L(s) = 1 | + (0.5 − 0.866i)3-s − 1.73i·5-s + (0.633 − 0.366i)7-s + (−0.499 − 0.866i)9-s + (−0.633 − 0.366i)11-s + (2.59 − 2.5i)13-s + (−1.49 − 0.866i)15-s + (−1.86 − 3.23i)17-s + (−1.09 + 0.633i)19-s − 0.732i·21-s + (−1.09 + 1.90i)23-s + 2.00·25-s − 0.999·27-s + (2.96 − 5.13i)29-s + 5.46i·31-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s − 0.774i·5-s + (0.239 − 0.138i)7-s + (−0.166 − 0.288i)9-s + (−0.191 − 0.110i)11-s + (0.720 − 0.693i)13-s + (−0.387 − 0.223i)15-s + (−0.452 − 0.783i)17-s + (−0.251 + 0.145i)19-s − 0.159i·21-s + (−0.228 + 0.396i)23-s + 0.400·25-s − 0.192·27-s + (0.550 − 0.953i)29-s + 0.981i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.11986 - 0.865021i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11986 - 0.865021i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (-2.59 + 2.5i)T \) |
good | 5 | \( 1 + 1.73iT - 5T^{2} \) |
| 7 | \( 1 + (-0.633 + 0.366i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.633 + 0.366i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.86 + 3.23i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.09 - 0.633i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.09 - 1.90i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.96 + 5.13i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 5.46iT - 31T^{2} \) |
| 37 | \( 1 + (-7.33 - 4.23i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.33 + 2.5i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.901 - 1.56i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 6.73iT - 47T^{2} \) |
| 53 | \( 1 - 5.92T + 53T^{2} \) |
| 59 | \( 1 + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.86 - 8.42i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.56 + 2.63i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (7.09 - 4.09i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 1.19iT - 73T^{2} \) |
| 79 | \( 1 - 12.3T + 79T^{2} \) |
| 83 | \( 1 - 15.6iT - 83T^{2} \) |
| 89 | \( 1 + (2.19 + 1.26i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (8.66 - 5i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.59557652847469844457841940545, −10.60810591121783212016986954346, −9.447037610849405893838903346236, −8.504665455673927040210727836566, −7.85670532852442204936272980019, −6.63709505972233957001980735109, −5.49479501976618177001612046759, −4.34488193542714438111454445035, −2.82790479917436827897632725596, −1.10972409181099362729520177762,
2.18978397533391814036747931945, 3.55687267388023006281141899658, 4.64125128726007515816578639374, 6.05417870303157348316457814810, 6.97801200137537074962552513522, 8.240273894397580355119995880381, 8.997781450349104837938677294321, 10.15732500362660617886802812460, 10.86694365316379292774536494004, 11.61140694244407094634268903152