L(s) = 1 | + (−2.56 − 1.18i)2-s + 3i·3-s + (5.20 + 6.07i)4-s − 8.43·5-s + (3.54 − 7.70i)6-s − 8.36i·7-s + (−6.20 − 21.7i)8-s − 9·9-s + (21.6 + 9.97i)10-s + 57.7·11-s + (−18.2 + 15.6i)12-s + (−18.9 + 42.8i)13-s + (−9.88 + 21.5i)14-s − 25.3i·15-s + (−9.78 + 63.2i)16-s − 72.1·17-s + ⋯ |
L(s) = 1 | + (−0.908 − 0.417i)2-s + 0.577i·3-s + (0.650 + 0.759i)4-s − 0.754·5-s + (0.241 − 0.524i)6-s − 0.451i·7-s + (−0.274 − 0.961i)8-s − 0.333·9-s + (0.685 + 0.315i)10-s + 1.58·11-s + (−0.438 + 0.375i)12-s + (−0.404 + 0.914i)13-s + (−0.188 + 0.410i)14-s − 0.435i·15-s + (−0.152 + 0.988i)16-s − 1.03·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.138 + 0.990i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.138 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.5696656030\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5696656030\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2.56 + 1.18i)T \) |
| 3 | \( 1 - 3iT \) |
| 13 | \( 1 + (18.9 - 42.8i)T \) |
good | 5 | \( 1 + 8.43T + 125T^{2} \) |
| 7 | \( 1 + 8.36iT - 343T^{2} \) |
| 11 | \( 1 - 57.7T + 1.33e3T^{2} \) |
| 17 | \( 1 + 72.1T + 4.91e3T^{2} \) |
| 19 | \( 1 + 144.T + 6.85e3T^{2} \) |
| 23 | \( 1 - 168.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 96.0iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 59.3iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 187.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 211. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 160. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 539. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 583. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 236.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 438. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 639.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 79.3iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 40.6iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 807.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 1.39e3T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.05e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.00e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.13145159046280639287414893815, −10.00787951198613910810703880247, −9.046205460334416943457082382762, −8.534954042337560323892284949792, −7.13860678705783575652665710941, −6.51337912536819635998045131266, −4.31893223469430979096144732946, −3.82392882301930319754646899818, −2.08510050101995510050238968327, −0.31673999890319670477211614783,
1.17155600331547277483010712389, 2.68780812381951862336972370561, 4.47303947559151765434326158569, 6.03038776181670562336465039496, 6.78123080884047833914807031014, 7.70387068666513273213906284704, 8.703235072671818573041468798963, 9.209198080504321470766478050528, 10.67333580104224797058617050729, 11.36758704023005427298164186239