L(s) = 1 | + (2.80 − 0.390i)2-s + 3i·3-s + (7.69 − 2.18i)4-s − 14.7·5-s + (1.17 + 8.40i)6-s − 0.217i·7-s + (20.6 − 9.14i)8-s − 9·9-s + (−41.4 + 5.78i)10-s − 43.4·11-s + (6.56 + 23.0i)12-s + (−23.9 + 40.2i)13-s + (−0.0851 − 0.609i)14-s − 44.3i·15-s + (54.4 − 33.6i)16-s − 16.1·17-s + ⋯ |
L(s) = 1 | + (0.990 − 0.138i)2-s + 0.577i·3-s + (0.961 − 0.273i)4-s − 1.32·5-s + (0.0797 + 0.571i)6-s − 0.0117i·7-s + (0.914 − 0.403i)8-s − 0.333·9-s + (−1.31 + 0.182i)10-s − 1.19·11-s + (0.158 + 0.555i)12-s + (−0.510 + 0.859i)13-s + (−0.00162 − 0.0116i)14-s − 0.763i·15-s + (0.850 − 0.526i)16-s − 0.230·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(−0.992−0.119i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(−0.992−0.119i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
−0.992−0.119i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), −0.992−0.119i)
|
Particular Values
L(2) |
≈ |
0.4865918874 |
L(21) |
≈ |
0.4865918874 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2.80+0.390i)T |
| 3 | 1−3iT |
| 13 | 1+(23.9−40.2i)T |
good | 5 | 1+14.7T+125T2 |
| 7 | 1+0.217iT−343T2 |
| 11 | 1+43.4T+1.33e3T2 |
| 17 | 1+16.1T+4.91e3T2 |
| 19 | 1+72.7T+6.85e3T2 |
| 23 | 1+83.4T+1.21e4T2 |
| 29 | 1+128.iT−2.43e4T2 |
| 31 | 1−306.iT−2.97e4T2 |
| 37 | 1+340.T+5.06e4T2 |
| 41 | 1+401.iT−6.89e4T2 |
| 43 | 1−32.3iT−7.95e4T2 |
| 47 | 1+118.iT−1.03e5T2 |
| 53 | 1−486.iT−1.48e5T2 |
| 59 | 1−241.T+2.05e5T2 |
| 61 | 1−457.iT−2.26e5T2 |
| 67 | 1−121.T+3.00e5T2 |
| 71 | 1+251.iT−3.57e5T2 |
| 73 | 1+66.4iT−3.89e5T2 |
| 79 | 1+164.T+4.93e5T2 |
| 83 | 1−311.T+5.71e5T2 |
| 89 | 1−1.00e3iT−7.04e5T2 |
| 97 | 1+433.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.95122695062350058993543790867, −10.79936548952409557581244534656, −10.32335131525393440817835223081, −8.756358074101324365609216070236, −7.70813541432929599972885148537, −6.81602403683991170762683382235, −5.39929231951182122851024569595, −4.44554934733360292466231589157, −3.68614109256587282194325633010, −2.35836947927465205586263934305,
0.11557005335099657550168895234, 2.32518423693991638623638742992, 3.48676385687586487428467353269, 4.65274039811674551831408512002, 5.71141083666505819710122428781, 6.94629998305340678279329914167, 7.82217777308566188050932878190, 8.269869128131003227402052287144, 10.24865484095014834703059034885, 11.13308269811215087092146284664