L(s) = 1 | + (2.80 − 0.390i)2-s + 3i·3-s + (7.69 − 2.18i)4-s − 14.7·5-s + (1.17 + 8.40i)6-s − 0.217i·7-s + (20.6 − 9.14i)8-s − 9·9-s + (−41.4 + 5.78i)10-s − 43.4·11-s + (6.56 + 23.0i)12-s + (−23.9 + 40.2i)13-s + (−0.0851 − 0.609i)14-s − 44.3i·15-s + (54.4 − 33.6i)16-s − 16.1·17-s + ⋯ |
L(s) = 1 | + (0.990 − 0.138i)2-s + 0.577i·3-s + (0.961 − 0.273i)4-s − 1.32·5-s + (0.0797 + 0.571i)6-s − 0.0117i·7-s + (0.914 − 0.403i)8-s − 0.333·9-s + (−1.31 + 0.182i)10-s − 1.19·11-s + (0.158 + 0.555i)12-s + (−0.510 + 0.859i)13-s + (−0.00162 − 0.0116i)14-s − 0.763i·15-s + (0.850 − 0.526i)16-s − 0.230·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.992 - 0.119i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.992 - 0.119i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.4865918874\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4865918874\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2.80 + 0.390i)T \) |
| 3 | \( 1 - 3iT \) |
| 13 | \( 1 + (23.9 - 40.2i)T \) |
good | 5 | \( 1 + 14.7T + 125T^{2} \) |
| 7 | \( 1 + 0.217iT - 343T^{2} \) |
| 11 | \( 1 + 43.4T + 1.33e3T^{2} \) |
| 17 | \( 1 + 16.1T + 4.91e3T^{2} \) |
| 19 | \( 1 + 72.7T + 6.85e3T^{2} \) |
| 23 | \( 1 + 83.4T + 1.21e4T^{2} \) |
| 29 | \( 1 + 128. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 306. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 340.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 401. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 32.3iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 118. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 486. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 241.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 457. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 121.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 251. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 66.4iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 164.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 311.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.00e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 433. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.95122695062350058993543790867, −10.79936548952409557581244534656, −10.32335131525393440817835223081, −8.756358074101324365609216070236, −7.70813541432929599972885148537, −6.81602403683991170762683382235, −5.39929231951182122851024569595, −4.44554934733360292466231589157, −3.68614109256587282194325633010, −2.35836947927465205586263934305,
0.11557005335099657550168895234, 2.32518423693991638623638742992, 3.48676385687586487428467353269, 4.65274039811674551831408512002, 5.71141083666505819710122428781, 6.94629998305340678279329914167, 7.82217777308566188050932878190, 8.269869128131003227402052287144, 10.24865484095014834703059034885, 11.13308269811215087092146284664