L(s) = 1 | + (−0.800 − 2.71i)2-s + 3i·3-s + (−6.71 + 4.34i)4-s + 12.1·5-s + (8.13 − 2.40i)6-s + 21.1i·7-s + (17.1 + 14.7i)8-s − 9·9-s + (−9.70 − 32.8i)10-s + 16.0·11-s + (−13.0 − 20.1i)12-s + (−36.8 + 29.0i)13-s + (57.3 − 16.9i)14-s + 36.3i·15-s + (26.2 − 58.3i)16-s + 45.8·17-s + ⋯ |
L(s) = 1 | + (−0.283 − 0.959i)2-s + 0.577i·3-s + (−0.839 + 0.543i)4-s + 1.08·5-s + (0.553 − 0.163i)6-s + 1.14i·7-s + (0.758 + 0.651i)8-s − 0.333·9-s + (−0.307 − 1.04i)10-s + 0.438·11-s + (−0.313 − 0.484i)12-s + (−0.785 + 0.619i)13-s + (1.09 − 0.323i)14-s + 0.626i·15-s + (0.410 − 0.911i)16-s + 0.653·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(0.0418−0.999i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(0.0418−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
0.0418−0.999i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), 0.0418−0.999i)
|
Particular Values
L(2) |
≈ |
1.179059389 |
L(21) |
≈ |
1.179059389 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.800+2.71i)T |
| 3 | 1−3iT |
| 13 | 1+(36.8−29.0i)T |
good | 5 | 1−12.1T+125T2 |
| 7 | 1−21.1iT−343T2 |
| 11 | 1−16.0T+1.33e3T2 |
| 17 | 1−45.8T+4.91e3T2 |
| 19 | 1+117.T+6.85e3T2 |
| 23 | 1+97.3T+1.21e4T2 |
| 29 | 1+90.0iT−2.43e4T2 |
| 31 | 1−151.iT−2.97e4T2 |
| 37 | 1+66.3T+5.06e4T2 |
| 41 | 1−112.iT−6.89e4T2 |
| 43 | 1−234.iT−7.95e4T2 |
| 47 | 1−580.iT−1.03e5T2 |
| 53 | 1+241.iT−1.48e5T2 |
| 59 | 1−313.T+2.05e5T2 |
| 61 | 1+334.iT−2.26e5T2 |
| 67 | 1+315.T+3.00e5T2 |
| 71 | 1−503.iT−3.57e5T2 |
| 73 | 1−757.iT−3.89e5T2 |
| 79 | 1−1.13e3T+4.93e5T2 |
| 83 | 1+822.T+5.71e5T2 |
| 89 | 1+803.iT−7.04e5T2 |
| 97 | 1−750.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.47364142516654068641143758054, −10.34137745330191595083208506776, −9.651761812335574791902471634108, −9.069208956154922869011786998040, −8.121676673823242371189376214625, −6.33612064547317664158597688652, −5.31620062567400372905161179271, −4.21560060835508425519798966254, −2.69840881777282360107385461779, −1.81605293288851458172496694496,
0.46013426914740574840634622432, 1.89984237063254858986635722394, 3.98155114294725685901483561543, 5.34523757654177386543741998049, 6.24698298894562390161895918654, 7.10729348867012960225216834621, 7.934714935461441086867768220096, 9.021025111441561956215815490498, 10.10435286763500373279353155093, 10.50672997892905602528135333954