L(s) = 1 | + (−0.800 − 2.71i)2-s + 3i·3-s + (−6.71 + 4.34i)4-s + 12.1·5-s + (8.13 − 2.40i)6-s + 21.1i·7-s + (17.1 + 14.7i)8-s − 9·9-s + (−9.70 − 32.8i)10-s + 16.0·11-s + (−13.0 − 20.1i)12-s + (−36.8 + 29.0i)13-s + (57.3 − 16.9i)14-s + 36.3i·15-s + (26.2 − 58.3i)16-s + 45.8·17-s + ⋯ |
L(s) = 1 | + (−0.283 − 0.959i)2-s + 0.577i·3-s + (−0.839 + 0.543i)4-s + 1.08·5-s + (0.553 − 0.163i)6-s + 1.14i·7-s + (0.758 + 0.651i)8-s − 0.333·9-s + (−0.307 − 1.04i)10-s + 0.438·11-s + (−0.313 − 0.484i)12-s + (−0.785 + 0.619i)13-s + (1.09 − 0.323i)14-s + 0.626i·15-s + (0.410 − 0.911i)16-s + 0.653·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0418 - 0.999i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.0418 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.179059389\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.179059389\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.800 + 2.71i)T \) |
| 3 | \( 1 - 3iT \) |
| 13 | \( 1 + (36.8 - 29.0i)T \) |
good | 5 | \( 1 - 12.1T + 125T^{2} \) |
| 7 | \( 1 - 21.1iT - 343T^{2} \) |
| 11 | \( 1 - 16.0T + 1.33e3T^{2} \) |
| 17 | \( 1 - 45.8T + 4.91e3T^{2} \) |
| 19 | \( 1 + 117.T + 6.85e3T^{2} \) |
| 23 | \( 1 + 97.3T + 1.21e4T^{2} \) |
| 29 | \( 1 + 90.0iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 151. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 66.3T + 5.06e4T^{2} \) |
| 41 | \( 1 - 112. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 234. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 580. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 241. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 313.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 334. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 315.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 503. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 757. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 1.13e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 822.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 803. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 750. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.47364142516654068641143758054, −10.34137745330191595083208506776, −9.651761812335574791902471634108, −9.069208956154922869011786998040, −8.121676673823242371189376214625, −6.33612064547317664158597688652, −5.31620062567400372905161179271, −4.21560060835508425519798966254, −2.69840881777282360107385461779, −1.81605293288851458172496694496,
0.46013426914740574840634622432, 1.89984237063254858986635722394, 3.98155114294725685901483561543, 5.34523757654177386543741998049, 6.24698298894562390161895918654, 7.10729348867012960225216834621, 7.934714935461441086867768220096, 9.021025111441561956215815490498, 10.10435286763500373279353155093, 10.50672997892905602528135333954