L(s) = 1 | + (0.800 − 2.71i)2-s − 3i·3-s + (−6.71 − 4.34i)4-s − 12.1·5-s + (−8.13 − 2.40i)6-s + 21.1i·7-s + (−17.1 + 14.7i)8-s − 9·9-s + (−9.70 + 32.8i)10-s − 16.0·11-s + (−13.0 + 20.1i)12-s + (36.8 − 29.0i)13-s + (57.3 + 16.9i)14-s + 36.3i·15-s + (26.2 + 58.3i)16-s + 45.8·17-s + ⋯ |
L(s) = 1 | + (0.283 − 0.959i)2-s − 0.577i·3-s + (−0.839 − 0.543i)4-s − 1.08·5-s + (−0.553 − 0.163i)6-s + 1.14i·7-s + (−0.758 + 0.651i)8-s − 0.333·9-s + (−0.307 + 1.04i)10-s − 0.438·11-s + (−0.313 + 0.484i)12-s + (0.785 − 0.619i)13-s + (1.09 + 0.323i)14-s + 0.626i·15-s + (0.410 + 0.911i)16-s + 0.653·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(0.981+0.191i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(0.981+0.191i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
0.981+0.191i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), 0.981+0.191i)
|
Particular Values
L(2) |
≈ |
1.108213021 |
L(21) |
≈ |
1.108213021 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.800+2.71i)T |
| 3 | 1+3iT |
| 13 | 1+(−36.8+29.0i)T |
good | 5 | 1+12.1T+125T2 |
| 7 | 1−21.1iT−343T2 |
| 11 | 1+16.0T+1.33e3T2 |
| 17 | 1−45.8T+4.91e3T2 |
| 19 | 1−117.T+6.85e3T2 |
| 23 | 1+97.3T+1.21e4T2 |
| 29 | 1−90.0iT−2.43e4T2 |
| 31 | 1−151.iT−2.97e4T2 |
| 37 | 1−66.3T+5.06e4T2 |
| 41 | 1−112.iT−6.89e4T2 |
| 43 | 1+234.iT−7.95e4T2 |
| 47 | 1−580.iT−1.03e5T2 |
| 53 | 1−241.iT−1.48e5T2 |
| 59 | 1+313.T+2.05e5T2 |
| 61 | 1−334.iT−2.26e5T2 |
| 67 | 1−315.T+3.00e5T2 |
| 71 | 1−503.iT−3.57e5T2 |
| 73 | 1−757.iT−3.89e5T2 |
| 79 | 1−1.13e3T+4.93e5T2 |
| 83 | 1−822.T+5.71e5T2 |
| 89 | 1+803.iT−7.04e5T2 |
| 97 | 1−750.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.50814569656800093319868071667, −10.56096707133710763364110041882, −9.359461778270892024458268776846, −8.371983321286301091237631080404, −7.67109629916802693813080753099, −5.97846728247275241569707987319, −5.16315605146332413448515485369, −3.63486254602505085011552770787, −2.73514982208916658908314234438, −1.12670991228808916640224381920,
0.45549523602458334076390992220, 3.54828017135141183636477276196, 4.03281499983128230546853283800, 5.16614532847081868814717754864, 6.42472824895634000112657444436, 7.66637877493551350487542485494, 7.958153594103724398073692045993, 9.308019887405266388811556703074, 10.21080278975245015950399540488, 11.38726237930981107812993573050