L(s) = 1 | + (−2.48 + 1.34i)2-s − 3i·3-s + (4.36 − 6.70i)4-s + 8.37·5-s + (4.04 + 7.46i)6-s + 16.5i·7-s + (−1.83 + 22.5i)8-s − 9·9-s + (−20.8 + 11.2i)10-s − 23.2·11-s + (−20.1 − 13.1i)12-s + (−46.2 − 7.80i)13-s + (−22.3 − 41.2i)14-s − 25.1i·15-s + (−25.8 − 58.5i)16-s − 14.7·17-s + ⋯ |
L(s) = 1 | + (−0.879 + 0.476i)2-s − 0.577i·3-s + (0.546 − 0.837i)4-s + 0.748·5-s + (0.275 + 0.507i)6-s + 0.896i·7-s + (−0.0811 + 0.996i)8-s − 0.333·9-s + (−0.658 + 0.356i)10-s − 0.636·11-s + (−0.483 − 0.315i)12-s + (−0.986 − 0.166i)13-s + (−0.426 − 0.787i)14-s − 0.432i·15-s + (−0.403 − 0.914i)16-s − 0.210·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.969 - 0.246i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.969 - 0.246i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.2529130909\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2529130909\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2.48 - 1.34i)T \) |
| 3 | \( 1 + 3iT \) |
| 13 | \( 1 + (46.2 + 7.80i)T \) |
good | 5 | \( 1 - 8.37T + 125T^{2} \) |
| 7 | \( 1 - 16.5iT - 343T^{2} \) |
| 11 | \( 1 + 23.2T + 1.33e3T^{2} \) |
| 17 | \( 1 + 14.7T + 4.91e3T^{2} \) |
| 19 | \( 1 - 124.T + 6.85e3T^{2} \) |
| 23 | \( 1 + 173.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 126. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 27.9iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 362.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 309. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 556. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 163. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 334. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 809.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 6.20iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 252.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 822. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 449. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 547.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 959.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 656. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 417. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.75034278488655383859188193398, −10.40627885179134322275187258773, −9.713361785007163235593065100184, −8.823850883089947542657706660223, −7.83998727807619870625865297534, −7.01109583640250790270142020773, −5.77848365305896533247767173749, −5.29903112546873011096412852630, −2.68479922090669779658880943672, −1.72365185075811917980391048038,
0.11341835193963989582767764224, 1.87590359439400690576925430392, 3.19385660466857244957002836011, 4.50298150492339776540604410169, 5.88880619491472209984412199898, 7.25431154547312441220602664279, 7.984071799263806972462813551940, 9.325790079672193767642361661601, 9.953224430339922543091432571792, 10.44132246491176216481159859890