L(s) = 1 | + 3·3-s + 3.29·5-s − 25.8·7-s + 9·9-s − 8.83·11-s − 13·13-s + 9.87·15-s − 10.2·17-s − 119.·19-s − 77.6·21-s − 141.·23-s − 114.·25-s + 27·27-s + 170.·29-s + 226.·31-s − 26.5·33-s − 85.1·35-s − 225.·37-s − 39·39-s − 274.·41-s − 111.·43-s + 29.6·45-s + 156.·47-s + 326.·49-s − 30.7·51-s − 85.1·53-s − 29.0·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.294·5-s − 1.39·7-s + 0.333·9-s − 0.242·11-s − 0.277·13-s + 0.169·15-s − 0.146·17-s − 1.44·19-s − 0.806·21-s − 1.28·23-s − 0.913·25-s + 0.192·27-s + 1.09·29-s + 1.31·31-s − 0.139·33-s − 0.411·35-s − 1.00·37-s − 0.160·39-s − 1.04·41-s − 0.394·43-s + 0.0981·45-s + 0.485·47-s + 0.951·49-s − 0.0844·51-s − 0.220·53-s − 0.0712·55-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3T |
| 13 | 1+13T |
good | 5 | 1−3.29T+125T2 |
| 7 | 1+25.8T+343T2 |
| 11 | 1+8.83T+1.33e3T2 |
| 17 | 1+10.2T+4.91e3T2 |
| 19 | 1+119.T+6.85e3T2 |
| 23 | 1+141.T+1.21e4T2 |
| 29 | 1−170.T+2.43e4T2 |
| 31 | 1−226.T+2.97e4T2 |
| 37 | 1+225.T+5.06e4T2 |
| 41 | 1+274.T+6.89e4T2 |
| 43 | 1+111.T+7.95e4T2 |
| 47 | 1−156.T+1.03e5T2 |
| 53 | 1+85.1T+1.48e5T2 |
| 59 | 1+889.T+2.05e5T2 |
| 61 | 1−463.T+2.26e5T2 |
| 67 | 1+459.T+3.00e5T2 |
| 71 | 1+560.T+3.57e5T2 |
| 73 | 1−784.T+3.89e5T2 |
| 79 | 1−241.T+4.93e5T2 |
| 83 | 1+1.27e3T+5.71e5T2 |
| 89 | 1−1.08e3T+7.04e5T2 |
| 97 | 1+79.9T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.32562671646902159028816148497, −9.993498419882439564928277611599, −8.911621503580280151647705856309, −8.028751454148506341239027958314, −6.73373998475477755736772247052, −6.05350067582724653057719832987, −4.45692626904635966156228758992, −3.26800874539872326447758293689, −2.13155032319669596782182198073, 0,
2.13155032319669596782182198073, 3.26800874539872326447758293689, 4.45692626904635966156228758992, 6.05350067582724653057719832987, 6.73373998475477755736772247052, 8.028751454148506341239027958314, 8.911621503580280151647705856309, 9.993498419882439564928277611599, 10.32562671646902159028816148497