Properties

Label 2-312-1.1-c3-0-12
Degree $2$
Conductor $312$
Sign $-1$
Analytic cond. $18.4085$
Root an. cond. $4.29052$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 1.46·5-s − 8.39·7-s + 9·9-s + 34.7·11-s − 13·13-s − 4.39·15-s − 108.·17-s + 143.·19-s + 25.1·21-s − 128.·23-s − 122.·25-s − 27·27-s − 18.8·29-s − 78.5·31-s − 104.·33-s − 12.2·35-s − 327.·37-s + 39·39-s + 327.·41-s − 336.·43-s + 13.1·45-s + 99.2·47-s − 272.·49-s + 324.·51-s − 686.·53-s + 50.9·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.130·5-s − 0.453·7-s + 0.333·9-s + 0.953·11-s − 0.277·13-s − 0.0756·15-s − 1.54·17-s + 1.72·19-s + 0.261·21-s − 1.16·23-s − 0.982·25-s − 0.192·27-s − 0.120·29-s − 0.455·31-s − 0.550·33-s − 0.0593·35-s − 1.45·37-s + 0.160·39-s + 1.24·41-s − 1.19·43-s + 0.0436·45-s + 0.308·47-s − 0.794·49-s + 0.890·51-s − 1.77·53-s + 0.124·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(312\)    =    \(2^{3} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(18.4085\)
Root analytic conductor: \(4.29052\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 312,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
13 \( 1 + 13T \)
good5 \( 1 - 1.46T + 125T^{2} \)
7 \( 1 + 8.39T + 343T^{2} \)
11 \( 1 - 34.7T + 1.33e3T^{2} \)
17 \( 1 + 108.T + 4.91e3T^{2} \)
19 \( 1 - 143.T + 6.85e3T^{2} \)
23 \( 1 + 128.T + 1.21e4T^{2} \)
29 \( 1 + 18.8T + 2.43e4T^{2} \)
31 \( 1 + 78.5T + 2.97e4T^{2} \)
37 \( 1 + 327.T + 5.06e4T^{2} \)
41 \( 1 - 327.T + 6.89e4T^{2} \)
43 \( 1 + 336.T + 7.95e4T^{2} \)
47 \( 1 - 99.2T + 1.03e5T^{2} \)
53 \( 1 + 686.T + 1.48e5T^{2} \)
59 \( 1 + 242.T + 2.05e5T^{2} \)
61 \( 1 + 644.T + 2.26e5T^{2} \)
67 \( 1 + 871.T + 3.00e5T^{2} \)
71 \( 1 - 100.T + 3.57e5T^{2} \)
73 \( 1 - 604.T + 3.89e5T^{2} \)
79 \( 1 - 1.07e3T + 4.93e5T^{2} \)
83 \( 1 - 741.T + 5.71e5T^{2} \)
89 \( 1 + 501.T + 7.04e5T^{2} \)
97 \( 1 + 1.56e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.88993503049656563820922312661, −9.733809704043121255205222347913, −9.176314488915552031245581611931, −7.75183967280174308472944621727, −6.71557368891686097648852347573, −5.91572732978783910958676792490, −4.68599079511752888023976641419, −3.49141092879221520172440692377, −1.75300276092692768523352777055, 0, 1.75300276092692768523352777055, 3.49141092879221520172440692377, 4.68599079511752888023976641419, 5.91572732978783910958676792490, 6.71557368891686097648852347573, 7.75183967280174308472944621727, 9.176314488915552031245581611931, 9.733809704043121255205222347913, 10.88993503049656563820922312661

Graph of the $Z$-function along the critical line