Properties

Label 2-312-1.1-c3-0-10
Degree $2$
Conductor $312$
Sign $1$
Analytic cond. $18.4085$
Root an. cond. $4.29052$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 19.1·5-s + 35.1·7-s + 9·9-s + 26·11-s − 13·13-s + 57.3·15-s − 36.2·17-s − 95.5·19-s + 105.·21-s − 161.·23-s + 240.·25-s + 27·27-s − 91.3·29-s − 266.·31-s + 78·33-s + 671.·35-s − 149.·37-s − 39·39-s − 77.8·41-s + 183.·43-s + 172.·45-s − 60.6·47-s + 890.·49-s − 108.·51-s + 281.·53-s + 496.·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.70·5-s + 1.89·7-s + 0.333·9-s + 0.712·11-s − 0.277·13-s + 0.987·15-s − 0.516·17-s − 1.15·19-s + 1.09·21-s − 1.46·23-s + 1.92·25-s + 0.192·27-s − 0.585·29-s − 1.54·31-s + 0.411·33-s + 3.24·35-s − 0.664·37-s − 0.160·39-s − 0.296·41-s + 0.651·43-s + 0.569·45-s − 0.188·47-s + 2.59·49-s − 0.298·51-s + 0.729·53-s + 1.21·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(312\)    =    \(2^{3} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(18.4085\)
Root analytic conductor: \(4.29052\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 312,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.586179284\)
\(L(\frac12)\) \(\approx\) \(3.586179284\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
13 \( 1 + 13T \)
good5 \( 1 - 19.1T + 125T^{2} \)
7 \( 1 - 35.1T + 343T^{2} \)
11 \( 1 - 26T + 1.33e3T^{2} \)
17 \( 1 + 36.2T + 4.91e3T^{2} \)
19 \( 1 + 95.5T + 6.85e3T^{2} \)
23 \( 1 + 161.T + 1.21e4T^{2} \)
29 \( 1 + 91.3T + 2.43e4T^{2} \)
31 \( 1 + 266.T + 2.97e4T^{2} \)
37 \( 1 + 149.T + 5.06e4T^{2} \)
41 \( 1 + 77.8T + 6.89e4T^{2} \)
43 \( 1 - 183.T + 7.95e4T^{2} \)
47 \( 1 + 60.6T + 1.03e5T^{2} \)
53 \( 1 - 281.T + 1.48e5T^{2} \)
59 \( 1 + 542.T + 2.05e5T^{2} \)
61 \( 1 - 65.0T + 2.26e5T^{2} \)
67 \( 1 + 1.03e3T + 3.00e5T^{2} \)
71 \( 1 - 1.04e3T + 3.57e5T^{2} \)
73 \( 1 - 483.T + 3.89e5T^{2} \)
79 \( 1 + 1.33e3T + 4.93e5T^{2} \)
83 \( 1 - 812.T + 5.71e5T^{2} \)
89 \( 1 - 936.T + 7.04e5T^{2} \)
97 \( 1 + 954.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.05144205561124725340267116979, −10.31194809942975245233471190816, −9.215669671319814268434114253472, −8.606010351118545401860918348051, −7.49378800629612049326858629046, −6.23805535267007924477684695878, −5.23710427814114969253752179319, −4.15952790984489884125185039394, −2.10695978885312781704145186954, −1.71775559267031069696382642172, 1.71775559267031069696382642172, 2.10695978885312781704145186954, 4.15952790984489884125185039394, 5.23710427814114969253752179319, 6.23805535267007924477684695878, 7.49378800629612049326858629046, 8.606010351118545401860918348051, 9.215669671319814268434114253472, 10.31194809942975245233471190816, 11.05144205561124725340267116979

Graph of the $Z$-function along the critical line