Properties

Label 2-312-1.1-c3-0-0
Degree $2$
Conductor $312$
Sign $1$
Analytic cond. $18.4085$
Root an. cond. $4.29052$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 10.8·5-s − 32.1·7-s + 9·9-s − 30.2·11-s + 13·13-s + 32.4·15-s + 34·17-s + 41.8·19-s + 96.5·21-s + 45.5·23-s − 8.28·25-s − 27·27-s + 2.40·29-s + 73.7·31-s + 90.6·33-s + 347.·35-s + 401.·37-s − 39·39-s − 353.·41-s − 329.·43-s − 97.2·45-s + 45.1·47-s + 693.·49-s − 102·51-s + 449.·53-s + 326.·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.966·5-s − 1.73·7-s + 0.333·9-s − 0.828·11-s + 0.277·13-s + 0.557·15-s + 0.485·17-s + 0.505·19-s + 1.00·21-s + 0.412·23-s − 0.0662·25-s − 0.192·27-s + 0.0154·29-s + 0.427·31-s + 0.478·33-s + 1.67·35-s + 1.78·37-s − 0.160·39-s − 1.34·41-s − 1.16·43-s − 0.322·45-s + 0.140·47-s + 2.02·49-s − 0.280·51-s + 1.16·53-s + 0.800·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(312\)    =    \(2^{3} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(18.4085\)
Root analytic conductor: \(4.29052\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 312,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6548537293\)
\(L(\frac12)\) \(\approx\) \(0.6548537293\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
13 \( 1 - 13T \)
good5 \( 1 + 10.8T + 125T^{2} \)
7 \( 1 + 32.1T + 343T^{2} \)
11 \( 1 + 30.2T + 1.33e3T^{2} \)
17 \( 1 - 34T + 4.91e3T^{2} \)
19 \( 1 - 41.8T + 6.85e3T^{2} \)
23 \( 1 - 45.5T + 1.21e4T^{2} \)
29 \( 1 - 2.40T + 2.43e4T^{2} \)
31 \( 1 - 73.7T + 2.97e4T^{2} \)
37 \( 1 - 401.T + 5.06e4T^{2} \)
41 \( 1 + 353.T + 6.89e4T^{2} \)
43 \( 1 + 329.T + 7.95e4T^{2} \)
47 \( 1 - 45.1T + 1.03e5T^{2} \)
53 \( 1 - 449.T + 1.48e5T^{2} \)
59 \( 1 + 351.T + 2.05e5T^{2} \)
61 \( 1 - 872.T + 2.26e5T^{2} \)
67 \( 1 + 177.T + 3.00e5T^{2} \)
71 \( 1 - 32.9T + 3.57e5T^{2} \)
73 \( 1 - 777.T + 3.89e5T^{2} \)
79 \( 1 - 350.T + 4.93e5T^{2} \)
83 \( 1 + 421.T + 5.71e5T^{2} \)
89 \( 1 + 1.36e3T + 7.04e5T^{2} \)
97 \( 1 - 468.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.35473228281097156889632899754, −10.25180959530670060989192422382, −9.615670107138524968739507667835, −8.287754698945801424664056837319, −7.27583271307434187580091015543, −6.38855428497556751475640986077, −5.32044198889573947734068103543, −3.90986639508482489353299048445, −2.95184291260975711182298362384, −0.55106253644359565211371329101, 0.55106253644359565211371329101, 2.95184291260975711182298362384, 3.90986639508482489353299048445, 5.32044198889573947734068103543, 6.38855428497556751475640986077, 7.27583271307434187580091015543, 8.287754698945801424664056837319, 9.615670107138524968739507667835, 10.25180959530670060989192422382, 11.35473228281097156889632899754

Graph of the $Z$-function along the critical line