L(s) = 1 | + (0.592 + 1.82i)2-s + (1.04 + 0.339i)3-s + (0.259 − 0.188i)4-s − 6.67·5-s + 2.10i·6-s + (3.63 − 2.63i)7-s + (6.70 + 4.87i)8-s + (−6.30 − 4.58i)9-s + (−3.95 − 12.1i)10-s + (−5.88 − 8.10i)11-s + (0.335 − 0.108i)12-s + (8.30 + 2.69i)13-s + (6.96 + 5.05i)14-s + (−6.97 − 2.26i)15-s + (−4.51 + 13.8i)16-s + (−6.86 + 9.45i)17-s + ⋯ |
L(s) = 1 | + (0.296 + 0.912i)2-s + (0.348 + 0.113i)3-s + (0.0648 − 0.0471i)4-s − 1.33·5-s + 0.350i·6-s + (0.518 − 0.376i)7-s + (0.838 + 0.608i)8-s + (−0.700 − 0.509i)9-s + (−0.395 − 1.21i)10-s + (−0.535 − 0.736i)11-s + (0.0279 − 0.00907i)12-s + (0.639 + 0.207i)13-s + (0.497 + 0.361i)14-s + (−0.464 − 0.151i)15-s + (−0.282 + 0.868i)16-s + (−0.404 + 0.556i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.596 - 0.802i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.596 - 0.802i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.03308 + 0.519239i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.03308 + 0.519239i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 + (30.9 + 1.96i)T \) |
good | 2 | \( 1 + (-0.592 - 1.82i)T + (-3.23 + 2.35i)T^{2} \) |
| 3 | \( 1 + (-1.04 - 0.339i)T + (7.28 + 5.29i)T^{2} \) |
| 5 | \( 1 + 6.67T + 25T^{2} \) |
| 7 | \( 1 + (-3.63 + 2.63i)T + (15.1 - 46.6i)T^{2} \) |
| 11 | \( 1 + (5.88 + 8.10i)T + (-37.3 + 115. i)T^{2} \) |
| 13 | \( 1 + (-8.30 - 2.69i)T + (136. + 99.3i)T^{2} \) |
| 17 | \( 1 + (6.86 - 9.45i)T + (-89.3 - 274. i)T^{2} \) |
| 19 | \( 1 + (-5.34 - 16.4i)T + (-292. + 212. i)T^{2} \) |
| 23 | \( 1 + (16.6 - 22.9i)T + (-163. - 503. i)T^{2} \) |
| 29 | \( 1 + (-46.5 + 15.1i)T + (680. - 494. i)T^{2} \) |
| 37 | \( 1 + 51.5iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (-13.2 - 40.8i)T + (-1.35e3 + 988. i)T^{2} \) |
| 43 | \( 1 + (-33.9 + 11.0i)T + (1.49e3 - 1.08e3i)T^{2} \) |
| 47 | \( 1 + (-16.6 + 51.1i)T + (-1.78e3 - 1.29e3i)T^{2} \) |
| 53 | \( 1 + (-44.3 + 61.0i)T + (-868. - 2.67e3i)T^{2} \) |
| 59 | \( 1 + (22.2 - 68.6i)T + (-2.81e3 - 2.04e3i)T^{2} \) |
| 61 | \( 1 + 47.1iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 61.3T + 4.48e3T^{2} \) |
| 71 | \( 1 + (77.7 + 56.5i)T + (1.55e3 + 4.79e3i)T^{2} \) |
| 73 | \( 1 + (-28.2 - 38.8i)T + (-1.64e3 + 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-16.9 + 23.3i)T + (-1.92e3 - 5.93e3i)T^{2} \) |
| 83 | \( 1 + (28.7 - 9.34i)T + (5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 + (23.4 + 32.3i)T + (-2.44e3 + 7.53e3i)T^{2} \) |
| 97 | \( 1 + (85.4 - 62.1i)T + (2.90e3 - 8.94e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.38152576862499312880454717740, −15.67057303767546207341167857517, −14.67595519628529368155507418153, −13.74177806142023066233268489737, −11.77705425528929823444061462389, −10.81548878347889292303113422206, −8.440818087640020182573689360946, −7.64361003964204977033130541277, −5.89879143522899353106696649111, −3.92461622529077347642715063194,
2.75568519170733192107918360870, 4.56409813501147942182695070919, 7.39418448200317129390851820418, 8.506864873961537330569207032146, 10.69418474835318749739133655643, 11.58017192244969740039204692946, 12.51901397988632325671631334405, 13.89703408399955523818989235426, 15.38490949049045265348882714407, 16.22606025281041246920851479868