L(s) = 1 | + (1.18 − 0.862i)2-s + (1.08 − 1.49i)3-s + (−0.570 + 1.75i)4-s − 4.14·5-s − 2.70i·6-s + (1.06 − 3.28i)7-s + (2.65 + 8.15i)8-s + (1.72 + 5.32i)9-s + (−4.92 + 3.57i)10-s + (−13.6 − 4.42i)11-s + (2.00 + 2.75i)12-s + (5.41 − 7.45i)13-s + (−1.56 − 4.81i)14-s + (−4.49 + 6.18i)15-s + (4.20 + 3.05i)16-s + (−1.46 + 0.474i)17-s + ⋯ |
L(s) = 1 | + (0.593 − 0.431i)2-s + (0.361 − 0.497i)3-s + (−0.142 + 0.439i)4-s − 0.829·5-s − 0.451i·6-s + (0.152 − 0.469i)7-s + (0.331 + 1.01i)8-s + (0.192 + 0.591i)9-s + (−0.492 + 0.357i)10-s + (−1.23 − 0.402i)11-s + (0.166 + 0.229i)12-s + (0.416 − 0.573i)13-s + (−0.111 − 0.344i)14-s + (−0.299 + 0.412i)15-s + (0.262 + 0.190i)16-s + (−0.0859 + 0.0279i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.865 + 0.500i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.865 + 0.500i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.19784 - 0.321668i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.19784 - 0.321668i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 + (-20.1 - 23.5i)T \) |
good | 2 | \( 1 + (-1.18 + 0.862i)T + (1.23 - 3.80i)T^{2} \) |
| 3 | \( 1 + (-1.08 + 1.49i)T + (-2.78 - 8.55i)T^{2} \) |
| 5 | \( 1 + 4.14T + 25T^{2} \) |
| 7 | \( 1 + (-1.06 + 3.28i)T + (-39.6 - 28.8i)T^{2} \) |
| 11 | \( 1 + (13.6 + 4.42i)T + (97.8 + 71.1i)T^{2} \) |
| 13 | \( 1 + (-5.41 + 7.45i)T + (-52.2 - 160. i)T^{2} \) |
| 17 | \( 1 + (1.46 - 0.474i)T + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (-16.5 + 12.0i)T + (111. - 343. i)T^{2} \) |
| 23 | \( 1 + (-17.2 + 5.61i)T + (427. - 310. i)T^{2} \) |
| 29 | \( 1 + (23.9 + 32.9i)T + (-259. + 799. i)T^{2} \) |
| 37 | \( 1 - 42.0iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (61.3 - 44.6i)T + (519. - 1.59e3i)T^{2} \) |
| 43 | \( 1 + (-15.1 - 20.9i)T + (-571. + 1.75e3i)T^{2} \) |
| 47 | \( 1 + (3.99 + 2.90i)T + (682. + 2.10e3i)T^{2} \) |
| 53 | \( 1 + (-38.5 + 12.5i)T + (2.27e3 - 1.65e3i)T^{2} \) |
| 59 | \( 1 + (-36.1 - 26.2i)T + (1.07e3 + 3.31e3i)T^{2} \) |
| 61 | \( 1 + 84.8iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 109.T + 4.48e3T^{2} \) |
| 71 | \( 1 + (19.6 + 60.3i)T + (-4.07e3 + 2.96e3i)T^{2} \) |
| 73 | \( 1 + (85.9 + 27.9i)T + (4.31e3 + 3.13e3i)T^{2} \) |
| 79 | \( 1 + (-142. + 46.2i)T + (5.04e3 - 3.66e3i)T^{2} \) |
| 83 | \( 1 + (-25.0 - 34.4i)T + (-2.12e3 + 6.55e3i)T^{2} \) |
| 89 | \( 1 + (-46.3 - 15.0i)T + (6.40e3 + 4.65e3i)T^{2} \) |
| 97 | \( 1 + (-15.1 + 46.6i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.50179256336756154780147634031, −15.32148862839194119655827328774, −13.55725102926617197329912957822, −13.24973870191795292769096118279, −11.77501744854709157795768998894, −10.67017008345374636840865929526, −8.253001055265714988724311366538, −7.57271174696019399957114396531, −4.86070483010359271522885110267, −3.06032179972579901000676426090,
3.87015210008785889206195543415, 5.40581355199600429011771461799, 7.28766640311883197655305894584, 9.029025776102650492893136924223, 10.36470965025232442497157425731, 12.00175416313450754070398032673, 13.37246812754058780780773902890, 14.72932914697800156300031917484, 15.44785654529404936109673830088, 16.12697560008465348083490418722