Properties

Label 2-30e2-1.1-c5-0-5
Degree $2$
Conductor $900$
Sign $1$
Analytic cond. $144.345$
Root an. cond. $12.0143$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12.5·7-s − 164.·11-s − 849.·13-s − 1.60e3·17-s − 446.·19-s + 802.·23-s − 4.47e3·29-s + 5.20e3·31-s − 8.24e3·37-s + 6.25e3·41-s + 1.13e4·43-s + 2.98e4·47-s − 1.66e4·49-s + 9.19e3·53-s − 9.94e3·59-s + 4.15e4·61-s − 4.90e4·67-s + 4.49e4·71-s − 6.56e4·73-s − 2.07e3·77-s − 6.71e4·79-s + 5.48e4·83-s + 5.39e4·89-s − 1.06e4·91-s − 1.00e5·97-s − 3.51e4·101-s + 2.62e4·103-s + ⋯
L(s)  = 1  + 0.0970·7-s − 0.410·11-s − 1.39·13-s − 1.34·17-s − 0.283·19-s + 0.316·23-s − 0.988·29-s + 0.972·31-s − 0.990·37-s + 0.580·41-s + 0.933·43-s + 1.97·47-s − 0.990·49-s + 0.449·53-s − 0.372·59-s + 1.42·61-s − 1.33·67-s + 1.05·71-s − 1.44·73-s − 0.0398·77-s − 1.21·79-s + 0.874·83-s + 0.722·89-s − 0.135·91-s − 1.08·97-s − 0.343·101-s + 0.243·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(144.345\)
Root analytic conductor: \(12.0143\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 900,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.309928267\)
\(L(\frac12)\) \(\approx\) \(1.309928267\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 12.5T + 1.68e4T^{2} \)
11 \( 1 + 164.T + 1.61e5T^{2} \)
13 \( 1 + 849.T + 3.71e5T^{2} \)
17 \( 1 + 1.60e3T + 1.41e6T^{2} \)
19 \( 1 + 446.T + 2.47e6T^{2} \)
23 \( 1 - 802.T + 6.43e6T^{2} \)
29 \( 1 + 4.47e3T + 2.05e7T^{2} \)
31 \( 1 - 5.20e3T + 2.86e7T^{2} \)
37 \( 1 + 8.24e3T + 6.93e7T^{2} \)
41 \( 1 - 6.25e3T + 1.15e8T^{2} \)
43 \( 1 - 1.13e4T + 1.47e8T^{2} \)
47 \( 1 - 2.98e4T + 2.29e8T^{2} \)
53 \( 1 - 9.19e3T + 4.18e8T^{2} \)
59 \( 1 + 9.94e3T + 7.14e8T^{2} \)
61 \( 1 - 4.15e4T + 8.44e8T^{2} \)
67 \( 1 + 4.90e4T + 1.35e9T^{2} \)
71 \( 1 - 4.49e4T + 1.80e9T^{2} \)
73 \( 1 + 6.56e4T + 2.07e9T^{2} \)
79 \( 1 + 6.71e4T + 3.07e9T^{2} \)
83 \( 1 - 5.48e4T + 3.93e9T^{2} \)
89 \( 1 - 5.39e4T + 5.58e9T^{2} \)
97 \( 1 + 1.00e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.322838973214231493514482240071, −8.615668702766901899040863529176, −7.55601164187925299004294566675, −6.96255999046426698023266899966, −5.86936404860790991495472785003, −4.90832263450580867861844099516, −4.15134240577473348277877970645, −2.77005786694108818730106032678, −2.01433632391251129021888671654, −0.48574405470212506600411229526, 0.48574405470212506600411229526, 2.01433632391251129021888671654, 2.77005786694108818730106032678, 4.15134240577473348277877970645, 4.90832263450580867861844099516, 5.86936404860790991495472785003, 6.96255999046426698023266899966, 7.55601164187925299004294566675, 8.615668702766901899040863529176, 9.322838973214231493514482240071

Graph of the $Z$-function along the critical line