Properties

Label 2-30e2-1.1-c3-0-0
Degree $2$
Conductor $900$
Sign $1$
Analytic cond. $53.1017$
Root an. cond. $7.28709$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 23.3·7-s − 63.2·11-s − 69.9·13-s − 92.1·17-s + 12·19-s + 184.·23-s + 189.·29-s + 136·31-s + 116.·37-s + 126.·41-s + 186.·43-s − 184.·47-s + 201·49-s − 276.·53-s − 316.·59-s + 794·61-s − 326.·67-s − 379.·71-s + 466.·73-s + 1.47e3·77-s + 384·79-s − 368.·83-s − 1.01e3·89-s + 1.63e3·91-s + 1.07e3·97-s + 1.58e3·101-s − 1.51e3·103-s + ⋯
L(s)  = 1  − 1.25·7-s − 1.73·11-s − 1.49·13-s − 1.31·17-s + 0.144·19-s + 1.67·23-s + 1.21·29-s + 0.787·31-s + 0.518·37-s + 0.481·41-s + 0.661·43-s − 0.572·47-s + 0.586·49-s − 0.716·53-s − 0.697·59-s + 1.66·61-s − 0.595·67-s − 0.634·71-s + 0.747·73-s + 2.18·77-s + 0.546·79-s − 0.487·83-s − 1.20·89-s + 1.88·91-s + 1.12·97-s + 1.55·101-s − 1.45·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(53.1017\)
Root analytic conductor: \(7.28709\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 900,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8403731421\)
\(L(\frac12)\) \(\approx\) \(0.8403731421\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 23.3T + 343T^{2} \)
11 \( 1 + 63.2T + 1.33e3T^{2} \)
13 \( 1 + 69.9T + 2.19e3T^{2} \)
17 \( 1 + 92.1T + 4.91e3T^{2} \)
19 \( 1 - 12T + 6.85e3T^{2} \)
23 \( 1 - 184.T + 1.21e4T^{2} \)
29 \( 1 - 189.T + 2.43e4T^{2} \)
31 \( 1 - 136T + 2.97e4T^{2} \)
37 \( 1 - 116.T + 5.06e4T^{2} \)
41 \( 1 - 126.T + 6.89e4T^{2} \)
43 \( 1 - 186.T + 7.95e4T^{2} \)
47 \( 1 + 184.T + 1.03e5T^{2} \)
53 \( 1 + 276.T + 1.48e5T^{2} \)
59 \( 1 + 316.T + 2.05e5T^{2} \)
61 \( 1 - 794T + 2.26e5T^{2} \)
67 \( 1 + 326.T + 3.00e5T^{2} \)
71 \( 1 + 379.T + 3.57e5T^{2} \)
73 \( 1 - 466.T + 3.89e5T^{2} \)
79 \( 1 - 384T + 4.93e5T^{2} \)
83 \( 1 + 368.T + 5.71e5T^{2} \)
89 \( 1 + 1.01e3T + 7.04e5T^{2} \)
97 \( 1 - 1.07e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.788470615502171070782200008936, −9.017243126577862888089037724085, −7.968701549901838030244040934641, −7.11027185918132579119803709970, −6.41525622782182921280303809158, −5.21914796332789836356771117992, −4.54210724328764140396063598833, −2.92977347507443461083923352022, −2.54606663257861218581636457307, −0.46534345035749018668541262363, 0.46534345035749018668541262363, 2.54606663257861218581636457307, 2.92977347507443461083923352022, 4.54210724328764140396063598833, 5.21914796332789836356771117992, 6.41525622782182921280303809158, 7.11027185918132579119803709970, 7.968701549901838030244040934641, 9.017243126577862888089037724085, 9.788470615502171070782200008936

Graph of the $Z$-function along the critical line