Properties

Label 2-30960-1.1-c1-0-26
Degree $2$
Conductor $30960$
Sign $-1$
Analytic cond. $247.216$
Root an. cond. $15.7231$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·7-s − 2·11-s − 13-s + 6·17-s + 19-s + 2·23-s + 25-s + 9·29-s − 9·31-s + 3·35-s − 10·37-s + 3·41-s + 43-s − 4·47-s + 2·49-s − 10·53-s + 2·55-s − 8·59-s + 13·61-s + 65-s + 11·67-s + 8·71-s − 5·73-s + 6·77-s − 11·79-s − 16·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.13·7-s − 0.603·11-s − 0.277·13-s + 1.45·17-s + 0.229·19-s + 0.417·23-s + 1/5·25-s + 1.67·29-s − 1.61·31-s + 0.507·35-s − 1.64·37-s + 0.468·41-s + 0.152·43-s − 0.583·47-s + 2/7·49-s − 1.37·53-s + 0.269·55-s − 1.04·59-s + 1.66·61-s + 0.124·65-s + 1.34·67-s + 0.949·71-s − 0.585·73-s + 0.683·77-s − 1.23·79-s − 1.75·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(30960\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 43\)
Sign: $-1$
Analytic conductor: \(247.216\)
Root analytic conductor: \(15.7231\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{30960} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 30960,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
43 \( 1 - T \)
good7 \( 1 + 3 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 + 9 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 - 13 T + p T^{2} \)
67 \( 1 - 11 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 5 T + p T^{2} \)
79 \( 1 + 11 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 - 18 T + p T^{2} \)
97 \( 1 + 4 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.64806089030713, −14.71127573785837, −14.35547967643025, −13.86643173692330, −13.07195642196075, −12.60589955083477, −12.41382664929678, −11.69586517956726, −11.08953197914951, −10.43706537189905, −9.993063362177687, −9.557109516173057, −8.867405941848812, −8.256059280185571, −7.686920287713852, −7.102708424886896, −6.644691155329125, −5.878418433012511, −5.294876066182259, −4.772196190632634, −3.823161389423909, −3.239022179464096, −2.917473355025254, −1.870558186348379, −0.8629682775274089, 0, 0.8629682775274089, 1.870558186348379, 2.917473355025254, 3.239022179464096, 3.823161389423909, 4.772196190632634, 5.294876066182259, 5.878418433012511, 6.644691155329125, 7.102708424886896, 7.686920287713852, 8.256059280185571, 8.867405941848812, 9.557109516173057, 9.993063362177687, 10.43706537189905, 11.08953197914951, 11.69586517956726, 12.41382664929678, 12.60589955083477, 13.07195642196075, 13.86643173692330, 14.35547967643025, 14.71127573785837, 15.64806089030713

Graph of the $Z$-function along the critical line