Properties

Label 2-30960-1.1-c1-0-21
Degree $2$
Conductor $30960$
Sign $1$
Analytic cond. $247.216$
Root an. cond. $15.7231$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 4·7-s + 2·13-s + 2·17-s − 6·19-s + 6·23-s + 25-s + 6·29-s − 4·31-s + 4·35-s + 4·37-s + 43-s − 10·47-s + 9·49-s + 2·53-s − 4·59-s + 6·61-s + 2·65-s + 12·67-s − 4·73-s − 4·79-s − 6·83-s + 2·85-s + 10·89-s + 8·91-s − 6·95-s + 6·97-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.51·7-s + 0.554·13-s + 0.485·17-s − 1.37·19-s + 1.25·23-s + 1/5·25-s + 1.11·29-s − 0.718·31-s + 0.676·35-s + 0.657·37-s + 0.152·43-s − 1.45·47-s + 9/7·49-s + 0.274·53-s − 0.520·59-s + 0.768·61-s + 0.248·65-s + 1.46·67-s − 0.468·73-s − 0.450·79-s − 0.658·83-s + 0.216·85-s + 1.05·89-s + 0.838·91-s − 0.615·95-s + 0.609·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(30960\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 43\)
Sign: $1$
Analytic conductor: \(247.216\)
Root analytic conductor: \(15.7231\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 30960,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.657153997\)
\(L(\frac12)\) \(\approx\) \(3.657153997\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
43 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 + p T^{2} \)
47 \( 1 + 10 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.95195852632997, −14.43726764355901, −14.33119804910543, −13.49352849113632, −12.95344651562375, −12.62135188918161, −11.66908057904521, −11.45278349735479, −10.69068667250152, −10.54966872237344, −9.696576852591296, −9.065142234815476, −8.428633371922927, −8.218133216082707, −7.465105464737746, −6.791607532851978, −6.227485601638635, −5.537706863034183, −4.925118683979657, −4.516460658102802, −3.737988396846893, −2.896551853455486, −2.117437978175548, −1.508187188355713, −0.7720648989312279, 0.7720648989312279, 1.508187188355713, 2.117437978175548, 2.896551853455486, 3.737988396846893, 4.516460658102802, 4.925118683979657, 5.537706863034183, 6.227485601638635, 6.791607532851978, 7.465105464737746, 8.218133216082707, 8.428633371922927, 9.065142234815476, 9.696576852591296, 10.54966872237344, 10.69068667250152, 11.45278349735479, 11.66908057904521, 12.62135188918161, 12.95344651562375, 13.49352849113632, 14.33119804910543, 14.43726764355901, 14.95195852632997

Graph of the $Z$-function along the critical line