Properties

Label 2-308-1.1-c3-0-7
Degree $2$
Conductor $308$
Sign $1$
Analytic cond. $18.1725$
Root an. cond. $4.26293$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.83·3-s + 12.0·5-s − 7·7-s + 7.02·9-s + 11·11-s + 31.7·13-s + 70.1·15-s + 112.·17-s − 6.19·19-s − 40.8·21-s + 113.·23-s + 19.5·25-s − 116.·27-s + 71.8·29-s − 88.9·31-s + 64.1·33-s − 84.1·35-s − 92.9·37-s + 184.·39-s + 192.·41-s + 124.·43-s + 84.4·45-s − 272.·47-s + 49·49-s + 653.·51-s − 122.·53-s + 132.·55-s + ⋯
L(s)  = 1  + 1.12·3-s + 1.07·5-s − 0.377·7-s + 0.260·9-s + 0.301·11-s + 0.676·13-s + 1.20·15-s + 1.59·17-s − 0.0747·19-s − 0.424·21-s + 1.03·23-s + 0.156·25-s − 0.830·27-s + 0.459·29-s − 0.515·31-s + 0.338·33-s − 0.406·35-s − 0.412·37-s + 0.759·39-s + 0.733·41-s + 0.441·43-s + 0.279·45-s − 0.846·47-s + 0.142·49-s + 1.79·51-s − 0.316·53-s + 0.324·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(308\)    =    \(2^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(18.1725\)
Root analytic conductor: \(4.26293\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 308,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.280980838\)
\(L(\frac12)\) \(\approx\) \(3.280980838\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 - 11T \)
good3 \( 1 - 5.83T + 27T^{2} \)
5 \( 1 - 12.0T + 125T^{2} \)
13 \( 1 - 31.7T + 2.19e3T^{2} \)
17 \( 1 - 112.T + 4.91e3T^{2} \)
19 \( 1 + 6.19T + 6.85e3T^{2} \)
23 \( 1 - 113.T + 1.21e4T^{2} \)
29 \( 1 - 71.8T + 2.43e4T^{2} \)
31 \( 1 + 88.9T + 2.97e4T^{2} \)
37 \( 1 + 92.9T + 5.06e4T^{2} \)
41 \( 1 - 192.T + 6.89e4T^{2} \)
43 \( 1 - 124.T + 7.95e4T^{2} \)
47 \( 1 + 272.T + 1.03e5T^{2} \)
53 \( 1 + 122.T + 1.48e5T^{2} \)
59 \( 1 + 67.4T + 2.05e5T^{2} \)
61 \( 1 + 173.T + 2.26e5T^{2} \)
67 \( 1 - 22.9T + 3.00e5T^{2} \)
71 \( 1 - 769.T + 3.57e5T^{2} \)
73 \( 1 + 57.1T + 3.89e5T^{2} \)
79 \( 1 + 381.T + 4.93e5T^{2} \)
83 \( 1 + 177.T + 5.71e5T^{2} \)
89 \( 1 + 243.T + 7.04e5T^{2} \)
97 \( 1 + 1.81e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.13546526351896884811350691564, −10.00722045034674589749914299720, −9.377141999511091939934182142648, −8.585963765913052979228992407085, −7.55668904252174798788164499014, −6.31102652166468182141009916993, −5.38150056405898238281279688524, −3.67195649218356068402521051489, −2.74045353411443523103340119925, −1.39631422895191903521809496927, 1.39631422895191903521809496927, 2.74045353411443523103340119925, 3.67195649218356068402521051489, 5.38150056405898238281279688524, 6.31102652166468182141009916993, 7.55668904252174798788164499014, 8.585963765913052979228992407085, 9.377141999511091939934182142648, 10.00722045034674589749914299720, 11.13546526351896884811350691564

Graph of the $Z$-function along the critical line