Properties

Label 2-308-1.1-c3-0-4
Degree $2$
Conductor $308$
Sign $1$
Analytic cond. $18.1725$
Root an. cond. $4.26293$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.25·3-s + 17.1·5-s − 7·7-s + 12.1·9-s + 11·11-s + 51.7·13-s − 107.·15-s − 104.·17-s + 10.6·19-s + 43.7·21-s − 9.26·23-s + 168.·25-s + 93.0·27-s + 223.·29-s − 237.·31-s − 68.8·33-s − 119.·35-s + 361.·37-s − 323.·39-s + 273.·41-s + 149.·43-s + 207.·45-s + 531.·47-s + 49·49-s + 652.·51-s + 408.·53-s + 188.·55-s + ⋯
L(s)  = 1  − 1.20·3-s + 1.53·5-s − 0.377·7-s + 0.448·9-s + 0.301·11-s + 1.10·13-s − 1.84·15-s − 1.48·17-s + 0.128·19-s + 0.454·21-s − 0.0840·23-s + 1.34·25-s + 0.663·27-s + 1.42·29-s − 1.37·31-s − 0.362·33-s − 0.578·35-s + 1.60·37-s − 1.32·39-s + 1.04·41-s + 0.530·43-s + 0.687·45-s + 1.65·47-s + 0.142·49-s + 1.79·51-s + 1.05·53-s + 0.461·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(308\)    =    \(2^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(18.1725\)
Root analytic conductor: \(4.26293\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 308,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.533442083\)
\(L(\frac12)\) \(\approx\) \(1.533442083\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 - 11T \)
good3 \( 1 + 6.25T + 27T^{2} \)
5 \( 1 - 17.1T + 125T^{2} \)
13 \( 1 - 51.7T + 2.19e3T^{2} \)
17 \( 1 + 104.T + 4.91e3T^{2} \)
19 \( 1 - 10.6T + 6.85e3T^{2} \)
23 \( 1 + 9.26T + 1.21e4T^{2} \)
29 \( 1 - 223.T + 2.43e4T^{2} \)
31 \( 1 + 237.T + 2.97e4T^{2} \)
37 \( 1 - 361.T + 5.06e4T^{2} \)
41 \( 1 - 273.T + 6.89e4T^{2} \)
43 \( 1 - 149.T + 7.95e4T^{2} \)
47 \( 1 - 531.T + 1.03e5T^{2} \)
53 \( 1 - 408.T + 1.48e5T^{2} \)
59 \( 1 - 416.T + 2.05e5T^{2} \)
61 \( 1 - 393.T + 2.26e5T^{2} \)
67 \( 1 + 1.04e3T + 3.00e5T^{2} \)
71 \( 1 + 552.T + 3.57e5T^{2} \)
73 \( 1 - 724.T + 3.89e5T^{2} \)
79 \( 1 + 516.T + 4.93e5T^{2} \)
83 \( 1 - 1.39e3T + 5.71e5T^{2} \)
89 \( 1 + 329.T + 7.04e5T^{2} \)
97 \( 1 + 10.6T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.04104259444640782290660147667, −10.57572954303012049253558579491, −9.459498804837724961463297965541, −8.724147461241812068621856503862, −6.90309451274365968659296679199, −6.11296939505751527923156979653, −5.64612566528288243171317581540, −4.31320658244832169830856285100, −2.44099995987620259662994753755, −0.940026695288567718687297924020, 0.940026695288567718687297924020, 2.44099995987620259662994753755, 4.31320658244832169830856285100, 5.64612566528288243171317581540, 6.11296939505751527923156979653, 6.90309451274365968659296679199, 8.724147461241812068621856503862, 9.459498804837724961463297965541, 10.57572954303012049253558579491, 11.04104259444640782290660147667

Graph of the $Z$-function along the critical line