Properties

Label 2-308-1.1-c3-0-2
Degree $2$
Conductor $308$
Sign $1$
Analytic cond. $18.1725$
Root an. cond. $4.26293$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.21·3-s − 20.5·5-s − 7·7-s − 25.5·9-s + 11·11-s + 66.7·13-s − 24.9·15-s − 59.7·17-s + 131.·19-s − 8.49·21-s + 163.·23-s + 296.·25-s − 63.7·27-s − 77.2·29-s + 206.·31-s + 13.3·33-s + 143.·35-s − 215.·37-s + 81.0·39-s − 403.·41-s + 43.5·43-s + 523.·45-s + 69.1·47-s + 49·49-s − 72.5·51-s + 334.·53-s − 225.·55-s + ⋯
L(s)  = 1  + 0.233·3-s − 1.83·5-s − 0.377·7-s − 0.945·9-s + 0.301·11-s + 1.42·13-s − 0.429·15-s − 0.852·17-s + 1.58·19-s − 0.0883·21-s + 1.47·23-s + 2.37·25-s − 0.454·27-s − 0.494·29-s + 1.19·31-s + 0.0704·33-s + 0.693·35-s − 0.956·37-s + 0.332·39-s − 1.53·41-s + 0.154·43-s + 1.73·45-s + 0.214·47-s + 0.142·49-s − 0.199·51-s + 0.868·53-s − 0.553·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(308\)    =    \(2^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(18.1725\)
Root analytic conductor: \(4.26293\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 308,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.192708198\)
\(L(\frac12)\) \(\approx\) \(1.192708198\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 - 11T \)
good3 \( 1 - 1.21T + 27T^{2} \)
5 \( 1 + 20.5T + 125T^{2} \)
13 \( 1 - 66.7T + 2.19e3T^{2} \)
17 \( 1 + 59.7T + 4.91e3T^{2} \)
19 \( 1 - 131.T + 6.85e3T^{2} \)
23 \( 1 - 163.T + 1.21e4T^{2} \)
29 \( 1 + 77.2T + 2.43e4T^{2} \)
31 \( 1 - 206.T + 2.97e4T^{2} \)
37 \( 1 + 215.T + 5.06e4T^{2} \)
41 \( 1 + 403.T + 6.89e4T^{2} \)
43 \( 1 - 43.5T + 7.95e4T^{2} \)
47 \( 1 - 69.1T + 1.03e5T^{2} \)
53 \( 1 - 334.T + 1.48e5T^{2} \)
59 \( 1 - 681.T + 2.05e5T^{2} \)
61 \( 1 + 24.4T + 2.26e5T^{2} \)
67 \( 1 + 285.T + 3.00e5T^{2} \)
71 \( 1 + 522.T + 3.57e5T^{2} \)
73 \( 1 - 592.T + 3.89e5T^{2} \)
79 \( 1 + 92.7T + 4.93e5T^{2} \)
83 \( 1 - 480.T + 5.71e5T^{2} \)
89 \( 1 - 1.19e3T + 7.04e5T^{2} \)
97 \( 1 - 308.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.60161726400676964833911311169, −10.58990186514565611189235454138, −8.962639477443248122775964784736, −8.542620130845934037743185315858, −7.48599983116517044300056620306, −6.55958084575416216877764416892, −5.09875930191017262695133465363, −3.74389064647217801046790785382, −3.12991117196745640994832449933, −0.74670210453715653109734864113, 0.74670210453715653109734864113, 3.12991117196745640994832449933, 3.74389064647217801046790785382, 5.09875930191017262695133465363, 6.55958084575416216877764416892, 7.48599983116517044300056620306, 8.542620130845934037743185315858, 8.962639477443248122775964784736, 10.58990186514565611189235454138, 11.60161726400676964833911311169

Graph of the $Z$-function along the critical line