Properties

Label 2-308-1.1-c3-0-1
Degree $2$
Conductor $308$
Sign $1$
Analytic cond. $18.1725$
Root an. cond. $4.26293$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.79·3-s − 7.61·5-s − 7·7-s − 12.6·9-s + 11·11-s − 52.1·13-s + 28.8·15-s + 115.·17-s − 21.5·19-s + 26.5·21-s − 36.6·23-s − 66.9·25-s + 150.·27-s + 50.2·29-s + 153.·31-s − 41.7·33-s + 53.3·35-s + 303.·37-s + 197.·39-s + 301.·41-s − 273.·43-s + 96.1·45-s + 391.·47-s + 49·49-s − 439.·51-s + 119.·53-s − 83.7·55-s + ⋯
L(s)  = 1  − 0.729·3-s − 0.681·5-s − 0.377·7-s − 0.467·9-s + 0.301·11-s − 1.11·13-s + 0.497·15-s + 1.65·17-s − 0.260·19-s + 0.275·21-s − 0.332·23-s − 0.535·25-s + 1.07·27-s + 0.321·29-s + 0.887·31-s − 0.220·33-s + 0.257·35-s + 1.34·37-s + 0.812·39-s + 1.14·41-s − 0.970·43-s + 0.318·45-s + 1.21·47-s + 0.142·49-s − 1.20·51-s + 0.308·53-s − 0.205·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(308\)    =    \(2^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(18.1725\)
Root analytic conductor: \(4.26293\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 308,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8875871281\)
\(L(\frac12)\) \(\approx\) \(0.8875871281\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 - 11T \)
good3 \( 1 + 3.79T + 27T^{2} \)
5 \( 1 + 7.61T + 125T^{2} \)
13 \( 1 + 52.1T + 2.19e3T^{2} \)
17 \( 1 - 115.T + 4.91e3T^{2} \)
19 \( 1 + 21.5T + 6.85e3T^{2} \)
23 \( 1 + 36.6T + 1.21e4T^{2} \)
29 \( 1 - 50.2T + 2.43e4T^{2} \)
31 \( 1 - 153.T + 2.97e4T^{2} \)
37 \( 1 - 303.T + 5.06e4T^{2} \)
41 \( 1 - 301.T + 6.89e4T^{2} \)
43 \( 1 + 273.T + 7.95e4T^{2} \)
47 \( 1 - 391.T + 1.03e5T^{2} \)
53 \( 1 - 119.T + 1.48e5T^{2} \)
59 \( 1 + 243.T + 2.05e5T^{2} \)
61 \( 1 - 824.T + 2.26e5T^{2} \)
67 \( 1 - 310.T + 3.00e5T^{2} \)
71 \( 1 + 705.T + 3.57e5T^{2} \)
73 \( 1 - 331.T + 3.89e5T^{2} \)
79 \( 1 - 812.T + 4.93e5T^{2} \)
83 \( 1 + 1.37e3T + 5.71e5T^{2} \)
89 \( 1 + 604.T + 7.04e5T^{2} \)
97 \( 1 - 963.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.53436375249862078695106073360, −10.33964466657685604504047293331, −9.585255828083874410374743267406, −8.255042687963456689430535320304, −7.41953669589113811641518544689, −6.24793829776203488644368613184, −5.33620066535859294455834152467, −4.11559263227423600745326745933, −2.78335898158518934341766800224, −0.66014682659270793876902554127, 0.66014682659270793876902554127, 2.78335898158518934341766800224, 4.11559263227423600745326745933, 5.33620066535859294455834152467, 6.24793829776203488644368613184, 7.41953669589113811641518544689, 8.255042687963456689430535320304, 9.585255828083874410374743267406, 10.33964466657685604504047293331, 11.53436375249862078695106073360

Graph of the $Z$-function along the critical line