L(s) = 1 | + (−0.707 + 0.707i)3-s − 1.00i·9-s + (−1.41 + 1.41i)19-s + i·25-s + (0.707 + 0.707i)27-s + (1.41 + 1.41i)43-s + 49-s − 2.00i·57-s + (−1.41 + 1.41i)67-s + 2i·73-s + (−0.707 − 0.707i)75-s − 1.00·81-s − 2·97-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)3-s − 1.00i·9-s + (−1.41 + 1.41i)19-s + i·25-s + (0.707 + 0.707i)27-s + (1.41 + 1.41i)43-s + 49-s − 2.00i·57-s + (−1.41 + 1.41i)67-s + 2i·73-s + (−0.707 − 0.707i)75-s − 1.00·81-s − 2·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3072 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3072 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7304416220\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7304416220\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
good | 5 | \( 1 - iT^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 - iT^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + iT^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 - iT^{2} \) |
| 67 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - 2iT - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + 2T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.188777729223045129511174371523, −8.501288829706252621221386772923, −7.61252048033858873517136605199, −6.71287564274634971063025448154, −5.94094145167146399279470691750, −5.43063973870499996027286541794, −4.32620683929509160746485781991, −3.89702041163973258740634789180, −2.74198755636911149032372621669, −1.36725538656361626900124952109,
0.51063105119599922290331032342, 1.95712338329204378325968463816, 2.72425410088202730598982268643, 4.16230907033899008918432432400, 4.81478377608992146015288375312, 5.75452046609404865511276035549, 6.42785414255528850372055491136, 7.05304989496546062757050854351, 7.79040635287870126992935266952, 8.624354187827936717032718184389