Properties

Label 2-306-1.1-c1-0-6
Degree $2$
Conductor $306$
Sign $1$
Analytic cond. $2.44342$
Root an. cond. $1.56314$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 4·5-s − 2·7-s + 8-s + 4·10-s − 6·13-s − 2·14-s + 16-s + 17-s + 4·19-s + 4·20-s − 6·23-s + 11·25-s − 6·26-s − 2·28-s + 4·29-s − 6·31-s + 32-s + 34-s − 8·35-s − 4·37-s + 4·38-s + 4·40-s + 10·41-s − 4·43-s − 6·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.78·5-s − 0.755·7-s + 0.353·8-s + 1.26·10-s − 1.66·13-s − 0.534·14-s + 1/4·16-s + 0.242·17-s + 0.917·19-s + 0.894·20-s − 1.25·23-s + 11/5·25-s − 1.17·26-s − 0.377·28-s + 0.742·29-s − 1.07·31-s + 0.176·32-s + 0.171·34-s − 1.35·35-s − 0.657·37-s + 0.648·38-s + 0.632·40-s + 1.56·41-s − 0.609·43-s − 0.884·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 306 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 306 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(306\)    =    \(2 \cdot 3^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(2.44342\)
Root analytic conductor: \(1.56314\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 306,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.249192179\)
\(L(\frac12)\) \(\approx\) \(2.249192179\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
17 \( 1 - T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.08855787871916423938091855149, −10.59451577638683826251692098584, −9.809680223299837765262582433989, −9.330186221363971309576111465163, −7.58460004774890445683046626123, −6.52498883063792512928187502617, −5.71929507199710618712172159386, −4.84625070630626219217033988858, −3.08824258991321588799800323044, −2.01050304782327789083256558357, 2.01050304782327789083256558357, 3.08824258991321588799800323044, 4.84625070630626219217033988858, 5.71929507199710618712172159386, 6.52498883063792512928187502617, 7.58460004774890445683046626123, 9.330186221363971309576111465163, 9.809680223299837765262582433989, 10.59451577638683826251692098584, 12.08855787871916423938091855149

Graph of the $Z$-function along the critical line