Properties

Label 2-305552-1.1-c1-0-4
Degree $2$
Conductor $305552$
Sign $1$
Analytic cond. $2439.84$
Root an. cond. $49.3947$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 3·5-s − 3·7-s + 6·9-s − 9·15-s + 3·17-s − 2·19-s + 9·21-s + 4·23-s + 4·25-s − 9·27-s + 6·29-s − 9·35-s − 5·37-s − 8·41-s − 5·43-s + 18·45-s + 7·47-s + 2·49-s − 9·51-s − 2·53-s + 6·57-s + 8·59-s − 4·61-s − 18·63-s + 4·67-s − 12·69-s + ⋯
L(s)  = 1  − 1.73·3-s + 1.34·5-s − 1.13·7-s + 2·9-s − 2.32·15-s + 0.727·17-s − 0.458·19-s + 1.96·21-s + 0.834·23-s + 4/5·25-s − 1.73·27-s + 1.11·29-s − 1.52·35-s − 0.821·37-s − 1.24·41-s − 0.762·43-s + 2.68·45-s + 1.02·47-s + 2/7·49-s − 1.26·51-s − 0.274·53-s + 0.794·57-s + 1.04·59-s − 0.512·61-s − 2.26·63-s + 0.488·67-s − 1.44·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 305552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 305552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(305552\)    =    \(2^{4} \cdot 13^{2} \cdot 113\)
Sign: $1$
Analytic conductor: \(2439.84\)
Root analytic conductor: \(49.3947\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 305552,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8751473889\)
\(L(\frac12)\) \(\approx\) \(0.8751473889\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 \)
113 \( 1 + T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.67144771674575, −12.21072284615836, −11.81975764781116, −11.33105197389702, −10.68056205839241, −10.36193230138180, −10.04716522176079, −9.742936365767380, −9.146312010879544, −8.682438595080909, −8.010914951401675, −7.183099350602477, −6.791500503901173, −6.542680204619149, −6.063836075166690, −5.650577442855069, −5.192031863190181, −4.889445067770098, −4.153685498030074, −3.502275246553881, −2.913309537876444, −2.284658377154520, −1.491118629371979, −1.103245672057307, −0.3050225687940153, 0.3050225687940153, 1.103245672057307, 1.491118629371979, 2.284658377154520, 2.913309537876444, 3.502275246553881, 4.153685498030074, 4.889445067770098, 5.192031863190181, 5.650577442855069, 6.063836075166690, 6.542680204619149, 6.791500503901173, 7.183099350602477, 8.010914951401675, 8.682438595080909, 9.146312010879544, 9.742936365767380, 10.04716522176079, 10.36193230138180, 10.68056205839241, 11.33105197389702, 11.81975764781116, 12.21072284615836, 12.67144771674575

Graph of the $Z$-function along the critical line