Properties

Label 2-3042-13.12-c1-0-48
Degree $2$
Conductor $3042$
Sign $-0.554 + 0.832i$
Analytic cond. $24.2904$
Root an. cond. $4.92853$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s + 3i·5-s + 2i·7-s + i·8-s + 3·10-s − 6i·11-s + 2·14-s + 16-s − 3·17-s − 2i·19-s − 3i·20-s − 6·22-s − 6·23-s − 4·25-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + 1.34i·5-s + 0.755i·7-s + 0.353i·8-s + 0.948·10-s − 1.80i·11-s + 0.534·14-s + 0.250·16-s − 0.727·17-s − 0.458i·19-s − 0.670i·20-s − 1.27·22-s − 1.25·23-s − 0.800·25-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.554 + 0.832i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.554 + 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3042\)    =    \(2 \cdot 3^{2} \cdot 13^{2}\)
Sign: $-0.554 + 0.832i$
Analytic conductor: \(24.2904\)
Root analytic conductor: \(4.92853\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3042} (1351, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3042,\ (\ :1/2),\ -0.554 + 0.832i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8540046922\)
\(L(\frac12)\) \(\approx\) \(0.8540046922\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 - 3iT - 5T^{2} \)
7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 + 6iT - 11T^{2} \)
17 \( 1 + 3T + 17T^{2} \)
19 \( 1 + 2iT - 19T^{2} \)
23 \( 1 + 6T + 23T^{2} \)
29 \( 1 + 3T + 29T^{2} \)
31 \( 1 - 4iT - 31T^{2} \)
37 \( 1 + 7iT - 37T^{2} \)
41 \( 1 + 3iT - 41T^{2} \)
43 \( 1 - 10T + 43T^{2} \)
47 \( 1 + 6iT - 47T^{2} \)
53 \( 1 + 3T + 53T^{2} \)
59 \( 1 - 59T^{2} \)
61 \( 1 + 7T + 61T^{2} \)
67 \( 1 - 10iT - 67T^{2} \)
71 \( 1 - 6iT - 71T^{2} \)
73 \( 1 + 13iT - 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 + 6iT - 83T^{2} \)
89 \( 1 + 18iT - 89T^{2} \)
97 \( 1 + 14iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.775347656742341972043894041688, −7.77396774518425991021370591890, −6.93129654183147120621234193936, −5.95286256421286728361577274680, −5.67199493111076621280458218394, −4.28109814095154246856433026863, −3.40574834170989541419037801669, −2.78703387214238670327121021428, −1.99678281305320550289416070561, −0.28375944327736613717004271617, 1.15507579099097851913742935470, 2.18425003754090017384578551295, 3.94817747707020312286286318964, 4.42244291550634203537230401192, 4.98881721024624112984027305687, 5.97086564337813197198563685615, 6.75969561148304226372221558972, 7.68638894058128807497550973040, 7.947305135300674233312556026942, 8.994131226139116208460147131087

Graph of the $Z$-function along the critical line