Properties

Label 2-3042-1.1-c1-0-14
Degree $2$
Conductor $3042$
Sign $1$
Analytic cond. $24.2904$
Root an. cond. $4.92853$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s + 4·7-s − 8-s − 10-s − 4·11-s − 4·14-s + 16-s − 3·17-s + 20-s + 4·22-s + 4·23-s − 4·25-s + 4·28-s + 29-s + 4·31-s − 32-s + 3·34-s + 4·35-s + 3·37-s − 40-s + 9·41-s − 8·43-s − 4·44-s − 4·46-s + 8·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s + 1.51·7-s − 0.353·8-s − 0.316·10-s − 1.20·11-s − 1.06·14-s + 1/4·16-s − 0.727·17-s + 0.223·20-s + 0.852·22-s + 0.834·23-s − 4/5·25-s + 0.755·28-s + 0.185·29-s + 0.718·31-s − 0.176·32-s + 0.514·34-s + 0.676·35-s + 0.493·37-s − 0.158·40-s + 1.40·41-s − 1.21·43-s − 0.603·44-s − 0.589·46-s + 1.16·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3042\)    =    \(2 \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(24.2904\)
Root analytic conductor: \(4.92853\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3042,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.607644991\)
\(L(\frac12)\) \(\approx\) \(1.607644991\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 - T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 3 T + p T^{2} \)
41 \( 1 - 9 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 7 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 11 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.575876464908081598780416363800, −8.067538296094563736739558824942, −7.45847858932764171422526569300, −6.59776306979735516753353489753, −5.56558824101611044799566134166, −5.03659896196472868503573475116, −4.09198333287568191342330829239, −2.61790136137242683845415483262, −2.06097627049476068441928998048, −0.871120187799610619299598627893, 0.871120187799610619299598627893, 2.06097627049476068441928998048, 2.61790136137242683845415483262, 4.09198333287568191342330829239, 5.03659896196472868503573475116, 5.56558824101611044799566134166, 6.59776306979735516753353489753, 7.45847858932764171422526569300, 8.067538296094563736739558824942, 8.575876464908081598780416363800

Graph of the $Z$-function along the critical line