L(s) = 1 | + (−0.5 + 0.866i)5-s + 7-s + (−0.5 − 0.866i)9-s + 11-s + (−1 − 1.73i)13-s + (0.5 − 0.866i)19-s + (−0.5 − 0.866i)23-s + (−0.499 − 0.866i)25-s + (−0.5 + 0.866i)35-s − 37-s + (0.5 − 0.866i)41-s + 0.999·45-s + (1 + 1.73i)47-s + (0.5 + 0.866i)53-s + (−0.5 + 0.866i)55-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)5-s + 7-s + (−0.5 − 0.866i)9-s + 11-s + (−1 − 1.73i)13-s + (0.5 − 0.866i)19-s + (−0.5 − 0.866i)23-s + (−0.499 − 0.866i)25-s + (−0.5 + 0.866i)35-s − 37-s + (0.5 − 0.866i)41-s + 0.999·45-s + (1 + 1.73i)47-s + (0.5 + 0.866i)53-s + (−0.5 + 0.866i)55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.671 + 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.671 + 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.146341705\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.146341705\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
good | 3 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 - T + T^{2} \) |
| 11 | \( 1 - T + T^{2} \) |
| 13 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.719707224417906527857920457540, −7.965064455222957655769838325575, −7.36760313654601233156382907999, −6.61962447106984075551930490720, −5.78837685987911999117401301561, −4.93924852574024289387332294438, −4.00222382936215213990925273132, −3.14876284602560299187250097473, −2.37953556364473894614404126086, −0.74695730338733601657553426168,
1.48731107266169626390219365833, 2.11394386211900300612107285870, 3.71668784814152797422293806826, 4.38003906219632290771811946169, 5.06798101386282369704926604996, 5.73887332879638268222262183474, 6.97852297093724148939125358379, 7.55062751389045490258270488112, 8.314671073311699696086634380387, 8.886269989091098314224352124940