L(s) = 1 | + (0.5 − 0.866i)5-s − 7-s + (−0.5 − 0.866i)9-s + 11-s + (1 + 1.73i)13-s + (0.5 − 0.866i)19-s + (0.5 + 0.866i)23-s + (−0.499 − 0.866i)25-s + (−0.5 + 0.866i)35-s + 37-s + (0.5 − 0.866i)41-s − 0.999·45-s + (−1 − 1.73i)47-s + (−0.5 − 0.866i)53-s + (0.5 − 0.866i)55-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)5-s − 7-s + (−0.5 − 0.866i)9-s + 11-s + (1 + 1.73i)13-s + (0.5 − 0.866i)19-s + (0.5 + 0.866i)23-s + (−0.499 − 0.866i)25-s + (−0.5 + 0.866i)35-s + 37-s + (0.5 − 0.866i)41-s − 0.999·45-s + (−1 − 1.73i)47-s + (−0.5 − 0.866i)53-s + (0.5 − 0.866i)55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.671 + 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.671 + 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.297371748\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.297371748\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
good | 3 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + T + T^{2} \) |
| 11 | \( 1 - T + T^{2} \) |
| 13 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.000732084135495242370467687617, −8.377116103663000337426178673480, −6.93721810886196574099493167579, −6.56065178387043791894861137201, −5.91933392737660480258898665736, −4.96400710779247508866763562378, −3.92775369384416416270841555023, −3.41712815029325000519048335661, −2.02194835953953711447701553187, −0.937359203617292703491779511416,
1.29828814189414780789059437273, 2.83135266384425356451791987173, 3.09414581716443576160011863329, 4.17343833389616459285210140999, 5.45966493862891719914594698633, 6.07407167079660713860752937162, 6.49728019716131598792827613114, 7.58042657672888258654992696404, 8.142584297363673569685049422218, 9.085091548687465994327044850140