L(s) = 1 | + 0.765i·3-s − i·5-s + 0.414·9-s + 1.41i·11-s + 1.84i·13-s + 0.765·15-s − i·19-s − 25-s + 1.08i·27-s − 1.08·33-s − 0.765i·37-s − 1.41·39-s − 0.414i·45-s + 49-s + 0.765i·53-s + ⋯ |
L(s) = 1 | + 0.765i·3-s − i·5-s + 0.414·9-s + 1.41i·11-s + 1.84i·13-s + 0.765·15-s − i·19-s − 25-s + 1.08i·27-s − 1.08·33-s − 0.765i·37-s − 1.41·39-s − 0.414i·45-s + 49-s + 0.765i·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.254342720\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.254342720\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 19 | \( 1 + iT \) |
good | 3 | \( 1 - 0.765iT - T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 - 1.41iT - T^{2} \) |
| 13 | \( 1 - 1.84iT - T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + 0.765iT - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - 0.765iT - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - 1.41iT - T^{2} \) |
| 67 | \( 1 - 1.84iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - 1.84T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.129748814033673208581373831884, −8.637151050097844366503537064428, −7.26114097678814148834386054740, −7.09177978460601672414286812082, −5.85736233283713026343575168047, −4.84121552523362897590967111303, −4.43166052174304919375379569122, −3.93962004717039260350182385249, −2.34457006809601763802264094532, −1.45958532729500536077602201562,
0.835846983054331114201909965002, 2.14582435379029483008954824290, 3.18801086118079585636251968137, 3.65158255643870189561669688461, 5.10661096026082472519931247064, 6.02637728455404333475087028259, 6.35701216263126749130982312605, 7.38982409545786359463882144696, 7.924970340283411325417645668528, 8.411165588497022306453135833147