| L(s) = 1 | + (−0.173 − 0.984i)5-s + (−0.173 + 0.300i)7-s + (0.766 + 0.642i)9-s + (0.766 + 1.32i)11-s + (−0.939 + 0.342i)13-s + (−0.766 + 0.642i)19-s + (−0.326 + 1.85i)23-s + (−0.939 + 0.342i)25-s + (0.326 + 0.118i)35-s + 1.87·37-s + (−1.43 − 0.524i)41-s + (0.5 − 0.866i)45-s + (−0.766 − 0.642i)47-s + (0.439 + 0.761i)49-s + (−0.0603 + 0.342i)53-s + ⋯ |
| L(s) = 1 | + (−0.173 − 0.984i)5-s + (−0.173 + 0.300i)7-s + (0.766 + 0.642i)9-s + (0.766 + 1.32i)11-s + (−0.939 + 0.342i)13-s + (−0.766 + 0.642i)19-s + (−0.326 + 1.85i)23-s + (−0.939 + 0.342i)25-s + (0.326 + 0.118i)35-s + 1.87·37-s + (−1.43 − 0.524i)41-s + (0.5 − 0.866i)45-s + (−0.766 − 0.642i)47-s + (0.439 + 0.761i)49-s + (−0.0603 + 0.342i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.513 - 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.513 - 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.094271682\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.094271682\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.173 + 0.984i)T \) |
| 19 | \( 1 + (0.766 - 0.642i)T \) |
| good | 3 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 7 | \( 1 + (0.173 - 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.766 - 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.939 - 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 17 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 23 | \( 1 + (0.326 - 1.85i)T + (-0.939 - 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - 1.87T + T^{2} \) |
| 41 | \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 43 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 47 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 53 | \( 1 + (0.0603 - 0.342i)T + (-0.939 - 0.342i)T^{2} \) |
| 59 | \( 1 + (-0.766 + 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 61 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 73 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 79 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-1.76 + 0.642i)T + (0.766 - 0.642i)T^{2} \) |
| 97 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.188801780458592943486977944931, −8.191400977140920389140740096595, −7.54226467797939597240367263144, −6.94351461524154246911268975312, −5.90610838365479527401825934886, −4.99453806879484337367620209348, −4.44841318692443810708266773585, −3.72749215611160281558097213093, −2.12376324825600369658721098009, −1.56651883601562805623368028268,
0.68720436466120847680485713214, 2.32461170215911848729692363814, 3.17957422680746496542108527230, 3.98072600809942269061329660301, 4.72573669286099296041592111666, 6.10505152792940198833406228511, 6.51257241283898268830514092636, 7.09744934825061293850608558528, 8.029453002607617022642589818586, 8.719333430266517668948410413229