Properties

Label 2-3040-760.139-c0-0-0
Degree $2$
Conductor $3040$
Sign $0.513 - 0.858i$
Analytic cond. $1.51715$
Root an. cond. $1.23172$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.173 − 0.984i)5-s + (−0.173 + 0.300i)7-s + (0.766 + 0.642i)9-s + (0.766 + 1.32i)11-s + (−0.939 + 0.342i)13-s + (−0.766 + 0.642i)19-s + (−0.326 + 1.85i)23-s + (−0.939 + 0.342i)25-s + (0.326 + 0.118i)35-s + 1.87·37-s + (−1.43 − 0.524i)41-s + (0.5 − 0.866i)45-s + (−0.766 − 0.642i)47-s + (0.439 + 0.761i)49-s + (−0.0603 + 0.342i)53-s + ⋯
L(s)  = 1  + (−0.173 − 0.984i)5-s + (−0.173 + 0.300i)7-s + (0.766 + 0.642i)9-s + (0.766 + 1.32i)11-s + (−0.939 + 0.342i)13-s + (−0.766 + 0.642i)19-s + (−0.326 + 1.85i)23-s + (−0.939 + 0.342i)25-s + (0.326 + 0.118i)35-s + 1.87·37-s + (−1.43 − 0.524i)41-s + (0.5 − 0.866i)45-s + (−0.766 − 0.642i)47-s + (0.439 + 0.761i)49-s + (−0.0603 + 0.342i)53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.513 - 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.513 - 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3040\)    =    \(2^{5} \cdot 5 \cdot 19\)
Sign: $0.513 - 0.858i$
Analytic conductor: \(1.51715\)
Root analytic conductor: \(1.23172\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3040} (2799, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3040,\ (\ :0),\ 0.513 - 0.858i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.094271682\)
\(L(\frac12)\) \(\approx\) \(1.094271682\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (0.173 + 0.984i)T \)
19 \( 1 + (0.766 - 0.642i)T \)
good3 \( 1 + (-0.766 - 0.642i)T^{2} \)
7 \( 1 + (0.173 - 0.300i)T + (-0.5 - 0.866i)T^{2} \)
11 \( 1 + (-0.766 - 1.32i)T + (-0.5 + 0.866i)T^{2} \)
13 \( 1 + (0.939 - 0.342i)T + (0.766 - 0.642i)T^{2} \)
17 \( 1 + (-0.173 + 0.984i)T^{2} \)
23 \( 1 + (0.326 - 1.85i)T + (-0.939 - 0.342i)T^{2} \)
29 \( 1 + (-0.173 - 0.984i)T^{2} \)
31 \( 1 + (0.5 + 0.866i)T^{2} \)
37 \( 1 - 1.87T + T^{2} \)
41 \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \)
43 \( 1 + (0.939 - 0.342i)T^{2} \)
47 \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \)
53 \( 1 + (0.0603 - 0.342i)T + (-0.939 - 0.342i)T^{2} \)
59 \( 1 + (-0.766 + 0.642i)T + (0.173 - 0.984i)T^{2} \)
61 \( 1 + (0.939 + 0.342i)T^{2} \)
67 \( 1 + (-0.173 - 0.984i)T^{2} \)
71 \( 1 + (0.939 - 0.342i)T^{2} \)
73 \( 1 + (-0.766 - 0.642i)T^{2} \)
79 \( 1 + (-0.766 - 0.642i)T^{2} \)
83 \( 1 + (0.5 + 0.866i)T^{2} \)
89 \( 1 + (-1.76 + 0.642i)T + (0.766 - 0.642i)T^{2} \)
97 \( 1 + (-0.173 + 0.984i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.188801780458592943486977944931, −8.191400977140920389140740096595, −7.54226467797939597240367263144, −6.94351461524154246911268975312, −5.90610838365479527401825934886, −4.99453806879484337367620209348, −4.44841318692443810708266773585, −3.72749215611160281558097213093, −2.12376324825600369658721098009, −1.56651883601562805623368028268, 0.68720436466120847680485713214, 2.32461170215911848729692363814, 3.17957422680746496542108527230, 3.98072600809942269061329660301, 4.72573669286099296041592111666, 6.10505152792940198833406228511, 6.51257241283898268830514092636, 7.09744934825061293850608558528, 8.029453002607617022642589818586, 8.719333430266517668948410413229

Graph of the $Z$-function along the critical line