Properties

Label 2-3040-1.1-c1-0-48
Degree $2$
Conductor $3040$
Sign $-1$
Analytic cond. $24.2745$
Root an. cond. $4.92691$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.52·3-s + 5-s − 0.329·7-s − 0.670·9-s + 0.879·11-s − 1.35·13-s − 1.52·15-s + 5.60·17-s − 19-s + 0.502·21-s − 8.77·23-s + 25-s + 5.60·27-s − 2.54·29-s + 0.394·31-s − 1.34·33-s − 0.329·35-s + 9.34·37-s + 2.06·39-s − 3.05·41-s − 4.22·43-s − 0.670·45-s − 1.51·47-s − 6.89·49-s − 8.54·51-s + 0.669·53-s + 0.879·55-s + ⋯
L(s)  = 1  − 0.881·3-s + 0.447·5-s − 0.124·7-s − 0.223·9-s + 0.265·11-s − 0.375·13-s − 0.394·15-s + 1.35·17-s − 0.229·19-s + 0.109·21-s − 1.82·23-s + 0.200·25-s + 1.07·27-s − 0.473·29-s + 0.0707·31-s − 0.233·33-s − 0.0556·35-s + 1.53·37-s + 0.330·39-s − 0.476·41-s − 0.643·43-s − 0.100·45-s − 0.220·47-s − 0.984·49-s − 1.19·51-s + 0.0919·53-s + 0.118·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3040\)    =    \(2^{5} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(24.2745\)
Root analytic conductor: \(4.92691\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3040,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
19 \( 1 + T \)
good3 \( 1 + 1.52T + 3T^{2} \)
7 \( 1 + 0.329T + 7T^{2} \)
11 \( 1 - 0.879T + 11T^{2} \)
13 \( 1 + 1.35T + 13T^{2} \)
17 \( 1 - 5.60T + 17T^{2} \)
23 \( 1 + 8.77T + 23T^{2} \)
29 \( 1 + 2.54T + 29T^{2} \)
31 \( 1 - 0.394T + 31T^{2} \)
37 \( 1 - 9.34T + 37T^{2} \)
41 \( 1 + 3.05T + 41T^{2} \)
43 \( 1 + 4.22T + 43T^{2} \)
47 \( 1 + 1.51T + 47T^{2} \)
53 \( 1 - 0.669T + 53T^{2} \)
59 \( 1 + 0.155T + 59T^{2} \)
61 \( 1 - 9.95T + 61T^{2} \)
67 \( 1 + 11.3T + 67T^{2} \)
71 \( 1 + 3.29T + 71T^{2} \)
73 \( 1 - 0.445T + 73T^{2} \)
79 \( 1 + 14.4T + 79T^{2} \)
83 \( 1 - 0.220T + 83T^{2} \)
89 \( 1 - 4.04T + 89T^{2} \)
97 \( 1 - 5.19T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.250631447385302360866630123641, −7.61933298638585188908047955931, −6.58571277657294753186723663404, −5.98636658114882588747438976420, −5.46731447417251298439566627328, −4.58994491386041966716205870162, −3.58693969579463836490442370877, −2.54109357820725989505537620387, −1.36403492637795508376909165950, 0, 1.36403492637795508376909165950, 2.54109357820725989505537620387, 3.58693969579463836490442370877, 4.58994491386041966716205870162, 5.46731447417251298439566627328, 5.98636658114882588747438976420, 6.58571277657294753186723663404, 7.61933298638585188908047955931, 8.250631447385302360866630123641

Graph of the $Z$-function along the critical line