Properties

Label 2-304-304.211-c1-0-5
Degree $2$
Conductor $304$
Sign $-0.963 + 0.268i$
Analytic cond. $2.42745$
Root an. cond. $1.55802$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.00 + 0.994i)2-s + (0.187 + 2.14i)3-s + (0.0230 − 1.99i)4-s + (−1.45 + 3.11i)5-s + (−2.31 − 1.96i)6-s + (0.904 + 1.56i)7-s + (1.96 + 2.03i)8-s + (−1.60 + 0.282i)9-s + (−1.63 − 4.58i)10-s + (−0.0590 + 0.0158i)11-s + (4.28 − 0.325i)12-s + (−0.0802 + 0.917i)13-s + (−2.46 − 0.676i)14-s + (−6.95 − 2.53i)15-s + (−3.99 − 0.0923i)16-s + (0.132 − 0.751i)17-s + ⋯
L(s)  = 1  + (−0.711 + 0.703i)2-s + (0.108 + 1.23i)3-s + (0.0115 − 0.999i)4-s + (−0.650 + 1.39i)5-s + (−0.946 − 0.803i)6-s + (0.341 + 0.592i)7-s + (0.694 + 0.719i)8-s + (−0.533 + 0.0940i)9-s + (−0.517 − 1.44i)10-s + (−0.0178 + 0.00477i)11-s + (1.23 − 0.0939i)12-s + (−0.0222 + 0.254i)13-s + (−0.659 − 0.180i)14-s + (−1.79 − 0.653i)15-s + (−0.999 − 0.0230i)16-s + (0.0321 − 0.182i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.963 + 0.268i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.963 + 0.268i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(304\)    =    \(2^{4} \cdot 19\)
Sign: $-0.963 + 0.268i$
Analytic conductor: \(2.42745\)
Root analytic conductor: \(1.55802\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{304} (211, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 304,\ (\ :1/2),\ -0.963 + 0.268i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.106373 - 0.778698i\)
\(L(\frac12)\) \(\approx\) \(0.106373 - 0.778698i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.00 - 0.994i)T \)
19 \( 1 + (1.18 + 4.19i)T \)
good3 \( 1 + (-0.187 - 2.14i)T + (-2.95 + 0.520i)T^{2} \)
5 \( 1 + (1.45 - 3.11i)T + (-3.21 - 3.83i)T^{2} \)
7 \( 1 + (-0.904 - 1.56i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (0.0590 - 0.0158i)T + (9.52 - 5.5i)T^{2} \)
13 \( 1 + (0.0802 - 0.917i)T + (-12.8 - 2.25i)T^{2} \)
17 \( 1 + (-0.132 + 0.751i)T + (-15.9 - 5.81i)T^{2} \)
23 \( 1 + (-2.43 - 0.887i)T + (17.6 + 14.7i)T^{2} \)
29 \( 1 + (-2.36 - 1.65i)T + (9.91 + 27.2i)T^{2} \)
31 \( 1 + (5.35 + 9.27i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-6.90 - 6.90i)T + 37iT^{2} \)
41 \( 1 + (-0.428 - 0.359i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (6.34 + 2.95i)T + (27.6 + 32.9i)T^{2} \)
47 \( 1 + (7.04 - 1.24i)T + (44.1 - 16.0i)T^{2} \)
53 \( 1 + (-4.15 - 8.91i)T + (-34.0 + 40.6i)T^{2} \)
59 \( 1 + (-3.26 - 4.66i)T + (-20.1 + 55.4i)T^{2} \)
61 \( 1 + (-4.02 - 8.64i)T + (-39.2 + 46.7i)T^{2} \)
67 \( 1 + (-2.12 + 3.02i)T + (-22.9 - 62.9i)T^{2} \)
71 \( 1 + (-4.42 - 12.1i)T + (-54.3 + 45.6i)T^{2} \)
73 \( 1 + (-0.0412 + 0.0491i)T + (-12.6 - 71.8i)T^{2} \)
79 \( 1 + (-8.32 - 6.98i)T + (13.7 + 77.7i)T^{2} \)
83 \( 1 + (0.133 + 0.0358i)T + (71.8 + 41.5i)T^{2} \)
89 \( 1 + (-2.03 + 1.70i)T + (15.4 - 87.6i)T^{2} \)
97 \( 1 + (-17.9 - 3.17i)T + (91.1 + 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.53948386428038702306216698020, −11.11716707570994637735464468249, −10.23092218650664975860716793810, −9.450075789159203838706612519850, −8.534617634247100115485003142804, −7.42786154712463090359850367653, −6.57305955713692347599361253429, −5.27390345563600971244807051820, −4.14420826858637814047997055375, −2.67988526307726704234227021028, 0.75591418087418445068107308667, 1.79844747586089585616721510824, 3.69479938689649063709382288365, 4.89945196583575279507915019602, 6.71511312497834294083955410906, 7.82920598232213816240825312668, 8.150409122870584217732994231781, 9.117896486193480270683684373986, 10.34668794004583878100344376425, 11.39904602848904267977024617155

Graph of the $Z$-function along the critical line