Properties

Label 2-304-1.1-c3-0-1
Degree $2$
Conductor $304$
Sign $1$
Analytic cond. $17.9365$
Root an. cond. $4.23516$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.73·3-s − 18.0·5-s − 0.213·7-s − 4.58·9-s + 3.39·11-s − 90.7·13-s + 85.5·15-s − 2.59·17-s − 19·19-s + 1.01·21-s − 26.6·23-s + 201.·25-s + 149.·27-s + 60.1·29-s + 176.·31-s − 16.0·33-s + 3.85·35-s − 154.·37-s + 429.·39-s + 434.·41-s + 365.·43-s + 82.8·45-s − 204.·47-s − 342.·49-s + 12.2·51-s − 135.·53-s − 61.3·55-s + ⋯
L(s)  = 1  − 0.911·3-s − 1.61·5-s − 0.0115·7-s − 0.169·9-s + 0.0930·11-s − 1.93·13-s + 1.47·15-s − 0.0370·17-s − 0.229·19-s + 0.0104·21-s − 0.241·23-s + 1.61·25-s + 1.06·27-s + 0.384·29-s + 1.02·31-s − 0.0847·33-s + 0.0186·35-s − 0.684·37-s + 1.76·39-s + 1.65·41-s + 1.29·43-s + 0.274·45-s − 0.633·47-s − 0.999·49-s + 0.0337·51-s − 0.351·53-s − 0.150·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(304\)    =    \(2^{4} \cdot 19\)
Sign: $1$
Analytic conductor: \(17.9365\)
Root analytic conductor: \(4.23516\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 304,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4356712309\)
\(L(\frac12)\) \(\approx\) \(0.4356712309\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + 19T \)
good3 \( 1 + 4.73T + 27T^{2} \)
5 \( 1 + 18.0T + 125T^{2} \)
7 \( 1 + 0.213T + 343T^{2} \)
11 \( 1 - 3.39T + 1.33e3T^{2} \)
13 \( 1 + 90.7T + 2.19e3T^{2} \)
17 \( 1 + 2.59T + 4.91e3T^{2} \)
23 \( 1 + 26.6T + 1.21e4T^{2} \)
29 \( 1 - 60.1T + 2.43e4T^{2} \)
31 \( 1 - 176.T + 2.97e4T^{2} \)
37 \( 1 + 154.T + 5.06e4T^{2} \)
41 \( 1 - 434.T + 6.89e4T^{2} \)
43 \( 1 - 365.T + 7.95e4T^{2} \)
47 \( 1 + 204.T + 1.03e5T^{2} \)
53 \( 1 + 135.T + 1.48e5T^{2} \)
59 \( 1 + 759.T + 2.05e5T^{2} \)
61 \( 1 - 284.T + 2.26e5T^{2} \)
67 \( 1 + 590.T + 3.00e5T^{2} \)
71 \( 1 - 972.T + 3.57e5T^{2} \)
73 \( 1 - 368.T + 3.89e5T^{2} \)
79 \( 1 + 204.T + 4.93e5T^{2} \)
83 \( 1 - 782.T + 5.71e5T^{2} \)
89 \( 1 - 213.T + 7.04e5T^{2} \)
97 \( 1 + 1.21e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.38706949386912544181039078755, −10.66335839591820873809749102252, −9.480228984253261288386880547318, −8.182660064137815763193007904729, −7.45115180981913637410561665473, −6.44266419423815731733596920049, −5.06480889553315385568676961501, −4.30108937850090138001115544203, −2.82215607317539289441585266022, −0.45539880345220226819484374287, 0.45539880345220226819484374287, 2.82215607317539289441585266022, 4.30108937850090138001115544203, 5.06480889553315385568676961501, 6.44266419423815731733596920049, 7.45115180981913637410561665473, 8.182660064137815763193007904729, 9.480228984253261288386880547318, 10.66335839591820873809749102252, 11.38706949386912544181039078755

Graph of the $Z$-function along the critical line