L(s) = 1 | + (−0.724 + 1.25i)5-s + (−0.5 − 0.866i)7-s + (−1 − 1.73i)11-s + (−2.44 + 4.24i)13-s − 2·17-s − 2.55·19-s + (0.5 − 0.866i)23-s + (1.44 + 2.51i)25-s + (−3.44 − 5.97i)29-s + (3 − 5.19i)31-s + 1.44·35-s + 11.7·37-s + (4.89 − 8.48i)41-s + (3.44 + 5.97i)43-s + (−4.89 − 8.48i)47-s + ⋯ |
L(s) = 1 | + (−0.324 + 0.561i)5-s + (−0.188 − 0.327i)7-s + (−0.301 − 0.522i)11-s + (−0.679 + 1.17i)13-s − 0.485·17-s − 0.585·19-s + (0.104 − 0.180i)23-s + (0.289 + 0.502i)25-s + (−0.640 − 1.10i)29-s + (0.538 − 0.933i)31-s + 0.245·35-s + 1.93·37-s + (0.765 − 1.32i)41-s + (0.526 + 0.911i)43-s + (−0.714 − 1.23i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.569 + 0.821i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.569 + 0.821i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.121967080\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.121967080\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
good | 5 | \( 1 + (0.724 - 1.25i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1 + 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2.44 - 4.24i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 2T + 17T^{2} \) |
| 19 | \( 1 + 2.55T + 19T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.44 + 5.97i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3 + 5.19i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 11.7T + 37T^{2} \) |
| 41 | \( 1 + (-4.89 + 8.48i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.44 - 5.97i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.89 + 8.48i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 10.8T + 53T^{2} \) |
| 59 | \( 1 + (-1 + 1.73i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.27 + 5.67i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.44 - 11.1i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 0.101T + 71T^{2} \) |
| 73 | \( 1 + 6.89T + 73T^{2} \) |
| 79 | \( 1 + (0.949 + 1.64i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1 + 1.73i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 16.8T + 89T^{2} \) |
| 97 | \( 1 + (1.44 + 2.51i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.621154318678727758978821169438, −7.70850991928327760541600129725, −7.16548997375381068309307579273, −6.39949652874841159680292183085, −5.69670983579081659061004437987, −4.44680875784617455217026858825, −4.03345662324417371017886975532, −2.84876759953526749060520700261, −2.09082958122113165159499681266, −0.42828108338245816140965397411,
0.937259493279072963151882205814, 2.35730703620098233407785598950, 3.09993880699324465818559147216, 4.34534740014173472972634064887, 4.88289543522764685800845048500, 5.73285291554331732886684097131, 6.56204533114860218870645803757, 7.52253698888361949235656196917, 8.020387243165545346022721098859, 8.863961955946735191315102850584