Properties

Label 2-300-60.59-c1-0-4
Degree $2$
Conductor $300$
Sign $-0.981 + 0.193i$
Analytic cond. $2.39551$
Root an. cond. $1.54774$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.780 + 1.17i)2-s + (−0.848 + 1.51i)3-s + (−0.780 + 1.84i)4-s + (−2.44 + 0.179i)6-s − 3.02·7-s + (−2.78 + 0.516i)8-s + (−1.56 − 2.56i)9-s + 1.32·11-s + (−2.11 − 2.74i)12-s + 5.12i·13-s + (−2.35 − 3.56i)14-s + (−2.78 − 2.87i)16-s + 2·17-s + (1.80 − 3.84i)18-s + 1.32i·19-s + ⋯
L(s)  = 1  + (0.552 + 0.833i)2-s + (−0.489 + 0.871i)3-s + (−0.390 + 0.920i)4-s + (−0.997 + 0.0731i)6-s − 1.14·7-s + (−0.983 + 0.182i)8-s + (−0.520 − 0.853i)9-s + 0.399·11-s + (−0.611 − 0.791i)12-s + 1.42i·13-s + (−0.630 − 0.951i)14-s + (−0.695 − 0.718i)16-s + 0.485·17-s + (0.424 − 0.905i)18-s + 0.303i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.981 + 0.193i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.981 + 0.193i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300\)    =    \(2^{2} \cdot 3 \cdot 5^{2}\)
Sign: $-0.981 + 0.193i$
Analytic conductor: \(2.39551\)
Root analytic conductor: \(1.54774\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{300} (299, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 300,\ (\ :1/2),\ -0.981 + 0.193i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0956149 - 0.980461i\)
\(L(\frac12)\) \(\approx\) \(0.0956149 - 0.980461i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.780 - 1.17i)T \)
3 \( 1 + (0.848 - 1.51i)T \)
5 \( 1 \)
good7 \( 1 + 3.02T + 7T^{2} \)
11 \( 1 - 1.32T + 11T^{2} \)
13 \( 1 - 5.12iT - 13T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 - 1.32iT - 19T^{2} \)
23 \( 1 + 0.371iT - 23T^{2} \)
29 \( 1 - 3.12iT - 29T^{2} \)
31 \( 1 - 4.71iT - 31T^{2} \)
37 \( 1 - 5.12iT - 37T^{2} \)
41 \( 1 - 1.12iT - 41T^{2} \)
43 \( 1 + 7.73T + 43T^{2} \)
47 \( 1 - 3.02iT - 47T^{2} \)
53 \( 1 - 12.2T + 53T^{2} \)
59 \( 1 - 14.1T + 59T^{2} \)
61 \( 1 - 3.12T + 61T^{2} \)
67 \( 1 + 4.34T + 67T^{2} \)
71 \( 1 - 3.39T + 71T^{2} \)
73 \( 1 + 8.24iT - 73T^{2} \)
79 \( 1 - 8.10iT - 79T^{2} \)
83 \( 1 + 15.1iT - 83T^{2} \)
89 \( 1 - 10.2iT - 89T^{2} \)
97 \( 1 + 6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.16615372437236119228013213966, −11.60080752681509683487748113595, −10.17771449018699549897167038475, −9.361052994696944134080725642178, −8.579679424252531386242033258285, −6.92493492078473318493343950931, −6.37937365873507274067531526109, −5.26644388986586980497562474462, −4.14397859670435600432827377860, −3.25303997592987683850330645766, 0.64316686514156208293603579266, 2.48749072182675905645233202290, 3.66108268567277585393370027894, 5.33380268576029404780189695390, 6.06107582634741617349617688276, 7.09532479653978872473302341351, 8.433034266317960358933826781994, 9.729264858886050741006975285440, 10.44115102685130018435533701418, 11.49671745157039920094839532220

Graph of the $Z$-function along the critical line