Properties

Label 2-300-60.59-c1-0-11
Degree $2$
Conductor $300$
Sign $0.503 + 0.863i$
Analytic cond. $2.39551$
Root an. cond. $1.54774$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.38 − 0.273i)2-s + (−0.758 − 1.55i)3-s + (1.85 + 0.758i)4-s + (0.626 + 2.36i)6-s + 3.56·7-s + (−2.36 − 1.55i)8-s + (−1.85 + 2.36i)9-s + 4.20·11-s + (−0.222 − 3.45i)12-s + 2.70i·13-s + (−4.94 − 0.973i)14-s + (2.85 + 2.80i)16-s + 0.828·17-s + (3.21 − 2.77i)18-s − 5.07i·19-s + ⋯
L(s)  = 1  + (−0.981 − 0.193i)2-s + (−0.437 − 0.899i)3-s + (0.925 + 0.379i)4-s + (0.255 + 0.966i)6-s + 1.34·7-s + (−0.834 − 0.550i)8-s + (−0.616 + 0.787i)9-s + 1.26·11-s + (−0.0642 − 0.997i)12-s + 0.749i·13-s + (−1.32 − 0.260i)14-s + (0.712 + 0.701i)16-s + 0.200·17-s + (0.757 − 0.653i)18-s − 1.16i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.503 + 0.863i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.503 + 0.863i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300\)    =    \(2^{2} \cdot 3 \cdot 5^{2}\)
Sign: $0.503 + 0.863i$
Analytic conductor: \(2.39551\)
Root analytic conductor: \(1.54774\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{300} (299, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 300,\ (\ :1/2),\ 0.503 + 0.863i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.760182 - 0.436715i\)
\(L(\frac12)\) \(\approx\) \(0.760182 - 0.436715i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.38 + 0.273i)T \)
3 \( 1 + (0.758 + 1.55i)T \)
5 \( 1 \)
good7 \( 1 - 3.56T + 7T^{2} \)
11 \( 1 - 4.20T + 11T^{2} \)
13 \( 1 - 2.70iT - 13T^{2} \)
17 \( 1 - 0.828T + 17T^{2} \)
19 \( 1 + 5.07iT - 19T^{2} \)
23 \( 1 + 1.09iT - 23T^{2} \)
29 \( 1 + 5.55iT - 29T^{2} \)
31 \( 1 + 6.59iT - 31T^{2} \)
37 \( 1 + 5.40iT - 37T^{2} \)
41 \( 1 - 10.2iT - 41T^{2} \)
43 \( 1 + 0.531T + 43T^{2} \)
47 \( 1 - 6.22iT - 47T^{2} \)
53 \( 1 - 5.55T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 0.701T + 61T^{2} \)
67 \( 1 + 2.04T + 67T^{2} \)
71 \( 1 + 11.3T + 71T^{2} \)
73 \( 1 - 7.70iT - 73T^{2} \)
79 \( 1 - 7.12iT - 79T^{2} \)
83 \( 1 + 3.11iT - 83T^{2} \)
89 \( 1 - 4.72iT - 89T^{2} \)
97 \( 1 - 8.10iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.47713325141816956429832882149, −11.02855946070153960285873295476, −9.567840887679472207192348214114, −8.645401292208923846483992127979, −7.78409398784827766293286586760, −6.92848145530034137020566032460, −5.99095473982976963957612827923, −4.40656150233966464267881089178, −2.31353251519839730619185020203, −1.16975258407951238491011294602, 1.43465821557815491582527101258, 3.52675859939790950533607002207, 5.01460246530330740097157488725, 5.93629440890404171240310318356, 7.18099872495224574976538221480, 8.380445967919440356188348788849, 8.977703832834004300150212923680, 10.17148538477943045289037850062, 10.70188703130423079502608014689, 11.70840450476429804791215959032

Graph of the $Z$-function along the critical line