L(s) = 1 | − 3i·3-s + 28i·7-s − 9·9-s − 24·11-s − 70i·13-s − 102i·17-s − 20·19-s + 84·21-s − 72i·23-s + 27i·27-s − 306·29-s − 136·31-s + 72i·33-s + 214i·37-s − 210·39-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + 1.51i·7-s − 0.333·9-s − 0.657·11-s − 1.49i·13-s − 1.45i·17-s − 0.241·19-s + 0.872·21-s − 0.652i·23-s + 0.192i·27-s − 1.95·29-s − 0.787·31-s + 0.379i·33-s + 0.950i·37-s − 0.862·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.6168154141\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6168154141\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 3iT \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 28iT - 343T^{2} \) |
| 11 | \( 1 + 24T + 1.33e3T^{2} \) |
| 13 | \( 1 + 70iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 102iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 20T + 6.85e3T^{2} \) |
| 23 | \( 1 + 72iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 306T + 2.43e4T^{2} \) |
| 31 | \( 1 + 136T + 2.97e4T^{2} \) |
| 37 | \( 1 - 214iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 150T + 6.89e4T^{2} \) |
| 43 | \( 1 + 292iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 72iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 414iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 744T + 2.05e5T^{2} \) |
| 61 | \( 1 + 418T + 2.26e5T^{2} \) |
| 67 | \( 1 + 188iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 480T + 3.57e5T^{2} \) |
| 73 | \( 1 - 434iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 1.35e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 612iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 30T + 7.04e5T^{2} \) |
| 97 | \( 1 - 286iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.08878124790016621636380164670, −9.904395766119424214776347652034, −8.870127374877108429017804567616, −8.067908766606554171168212463315, −7.07107147013258066738460917740, −5.69885639492656934443017549807, −5.21092384867302336260013302716, −3.12361369486874690740920191813, −2.19196243165657908107263875991, −0.21581774694381423481913778020,
1.73700742106261002077288777173, 3.70522203594383587188523298040, 4.29532029313424573080235283742, 5.68441340119835387532225692903, 6.94549049681046813404907980585, 7.79503360970758461673710478982, 9.014578247177705852645739610895, 9.931593722838556417466438636177, 10.79881034349280661534942936398, 11.34064297322135270274776709491