L(s) = 1 | + 3i·3-s − 28i·7-s − 9·9-s − 24·11-s + 70i·13-s + 102i·17-s − 20·19-s + 84·21-s + 72i·23-s − 27i·27-s − 306·29-s − 136·31-s − 72i·33-s − 214i·37-s − 210·39-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 1.51i·7-s − 0.333·9-s − 0.657·11-s + 1.49i·13-s + 1.45i·17-s − 0.241·19-s + 0.872·21-s + 0.652i·23-s − 0.192i·27-s − 1.95·29-s − 0.787·31-s − 0.379i·33-s − 0.950i·37-s − 0.862·39-s + ⋯ |
Λ(s)=(=(300s/2ΓC(s)L(s)(−0.894−0.447i)Λ(4−s)
Λ(s)=(=(300s/2ΓC(s+3/2)L(s)(−0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
300
= 22⋅3⋅52
|
Sign: |
−0.894−0.447i
|
Analytic conductor: |
17.7005 |
Root analytic conductor: |
4.20720 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ300(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 300, ( :3/2), −0.894−0.447i)
|
Particular Values
L(2) |
≈ |
0.6168154141 |
L(21) |
≈ |
0.6168154141 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3iT |
| 5 | 1 |
good | 7 | 1+28iT−343T2 |
| 11 | 1+24T+1.33e3T2 |
| 13 | 1−70iT−2.19e3T2 |
| 17 | 1−102iT−4.91e3T2 |
| 19 | 1+20T+6.85e3T2 |
| 23 | 1−72iT−1.21e4T2 |
| 29 | 1+306T+2.43e4T2 |
| 31 | 1+136T+2.97e4T2 |
| 37 | 1+214iT−5.06e4T2 |
| 41 | 1+150T+6.89e4T2 |
| 43 | 1−292iT−7.95e4T2 |
| 47 | 1+72iT−1.03e5T2 |
| 53 | 1−414iT−1.48e5T2 |
| 59 | 1−744T+2.05e5T2 |
| 61 | 1+418T+2.26e5T2 |
| 67 | 1−188iT−3.00e5T2 |
| 71 | 1−480T+3.57e5T2 |
| 73 | 1+434iT−3.89e5T2 |
| 79 | 1+1.35e3T+4.93e5T2 |
| 83 | 1−612iT−5.71e5T2 |
| 89 | 1−30T+7.04e5T2 |
| 97 | 1+286iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.34064297322135270274776709491, −10.79881034349280661534942936398, −9.931593722838556417466438636177, −9.014578247177705852645739610895, −7.79503360970758461673710478982, −6.94549049681046813404907980585, −5.68441340119835387532225692903, −4.29532029313424573080235283742, −3.70522203594383587188523298040, −1.73700742106261002077288777173,
0.21581774694381423481913778020, 2.19196243165657908107263875991, 3.12361369486874690740920191813, 5.21092384867302336260013302716, 5.69885639492656934443017549807, 7.07107147013258066738460917740, 8.067908766606554171168212463315, 8.870127374877108429017804567616, 9.904395766119424214776347652034, 11.08878124790016621636380164670