L(s) = 1 | − 3i·3-s − 7i·7-s − 9·9-s − 54·11-s + 55i·13-s + 18i·17-s + 25·19-s − 21·21-s + 18i·23-s + 27i·27-s + 54·29-s − 271·31-s + 162i·33-s + 314i·37-s + 165·39-s + ⋯ |
L(s) = 1 | − 0.577i·3-s − 0.377i·7-s − 0.333·9-s − 1.48·11-s + 1.17i·13-s + 0.256i·17-s + 0.301·19-s − 0.218·21-s + 0.163i·23-s + 0.192i·27-s + 0.345·29-s − 1.57·31-s + 0.854i·33-s + 1.39i·37-s + 0.677·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.4983210546\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4983210546\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 3iT \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 7iT - 343T^{2} \) |
| 11 | \( 1 + 54T + 1.33e3T^{2} \) |
| 13 | \( 1 - 55iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 18iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 25T + 6.85e3T^{2} \) |
| 23 | \( 1 - 18iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 54T + 2.43e4T^{2} \) |
| 31 | \( 1 + 271T + 2.97e4T^{2} \) |
| 37 | \( 1 - 314iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 360T + 6.89e4T^{2} \) |
| 43 | \( 1 - 163iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 522iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 36iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 126T + 2.05e5T^{2} \) |
| 61 | \( 1 - 47T + 2.26e5T^{2} \) |
| 67 | \( 1 + 343iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 1.08e3T + 3.57e5T^{2} \) |
| 73 | \( 1 - 1.05e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 568T + 4.93e5T^{2} \) |
| 83 | \( 1 + 1.42e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.44e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 439iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.60609884591652711900355878266, −10.75672836086343634244033158448, −9.783198211330513501265108725625, −8.634771083437994388019404849359, −7.67795466423533824726446588063, −6.87690304715967244055799843585, −5.69424975341897271626081421592, −4.53140699414763792052279030522, −3.00958633973042921810540071001, −1.62210006092670562822078350465,
0.17602046240831288272219351373, 2.42987144276404713890696522463, 3.55770088522406099045002116059, 5.14037377627294060158795383127, 5.62510119856003649197402528406, 7.25619094007850076495064708602, 8.189119290841646359411591304701, 9.126702531666962289188497627986, 10.29633388406854465694486111123, 10.70637666713420104915664190723