L(s) = 1 | + (0.534 + 1.92i)2-s + 1.73i·3-s + (−3.42 + 2.05i)4-s + (−3.33 + 0.925i)6-s − 11.9i·7-s + (−5.79 − 5.51i)8-s − 2.99·9-s − 14.5i·11-s + (−3.56 − 5.94i)12-s − 22.4·13-s + (23.0 − 6.39i)14-s + (7.52 − 14.1i)16-s − 12.6·17-s + (−1.60 − 5.78i)18-s + 8.76i·19-s + ⋯ |
L(s) = 1 | + (0.267 + 0.963i)2-s + 0.577i·3-s + (−0.857 + 0.514i)4-s + (−0.556 + 0.154i)6-s − 1.71i·7-s + (−0.724 − 0.688i)8-s − 0.333·9-s − 1.32i·11-s + (−0.297 − 0.495i)12-s − 1.72·13-s + (1.64 − 0.456i)14-s + (0.470 − 0.882i)16-s − 0.746·17-s + (−0.0890 − 0.321i)18-s + 0.461i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.514 + 0.857i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.514 + 0.857i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.578818 - 0.327637i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.578818 - 0.327637i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.534 - 1.92i)T \) |
| 3 | \( 1 - 1.73iT \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 11.9iT - 49T^{2} \) |
| 11 | \( 1 + 14.5iT - 121T^{2} \) |
| 13 | \( 1 + 22.4T + 169T^{2} \) |
| 17 | \( 1 + 12.6T + 289T^{2} \) |
| 19 | \( 1 - 8.76iT - 361T^{2} \) |
| 23 | \( 1 - 4.99iT - 529T^{2} \) |
| 29 | \( 1 - 2.74T + 841T^{2} \) |
| 31 | \( 1 - 16.3iT - 961T^{2} \) |
| 37 | \( 1 + 32.4T + 1.36e3T^{2} \) |
| 41 | \( 1 - 42.7T + 1.68e3T^{2} \) |
| 43 | \( 1 - 16.5iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 48.5iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 94.1T + 2.80e3T^{2} \) |
| 59 | \( 1 + 43.2iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 56.7T + 3.72e3T^{2} \) |
| 67 | \( 1 - 61.1iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 39.6iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 99.5T + 5.32e3T^{2} \) |
| 79 | \( 1 - 10.7iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 140. iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 54.8T + 7.92e3T^{2} \) |
| 97 | \( 1 + 14.1T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.23747642076455013254457868702, −10.28918125965378739032574585000, −9.466067542190423014252463341698, −8.301058919996048437897794301030, −7.41503606794007008738448297981, −6.54025788647155060027750472569, −5.21923337583290022317815074235, −4.30294466501342494385350164379, −3.30626747669780039143346428935, −0.28110416704837600467560965129,
2.09570601888426694511738973610, 2.62017442660786249667933183337, 4.60687183663531269259304886364, 5.39834939600427059425700288060, 6.68894590731783161659335857248, 7.993351069552853978672975856869, 9.213761242826300538678908382873, 9.629206514520974168970825992271, 10.97658299264792722736373354207, 12.06773539146449408280314404648