Properties

Label 2-300-4.3-c2-0-2
Degree $2$
Conductor $300$
Sign $0.514 - 0.857i$
Analytic cond. $8.17440$
Root an. cond. $2.85909$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.534 − 1.92i)2-s − 1.73i·3-s + (−3.42 − 2.05i)4-s + (−3.33 − 0.925i)6-s + 11.9i·7-s + (−5.79 + 5.51i)8-s − 2.99·9-s + 14.5i·11-s + (−3.56 + 5.94i)12-s − 22.4·13-s + (23.0 + 6.39i)14-s + (7.52 + 14.1i)16-s − 12.6·17-s + (−1.60 + 5.78i)18-s − 8.76i·19-s + ⋯
L(s)  = 1  + (0.267 − 0.963i)2-s − 0.577i·3-s + (−0.857 − 0.514i)4-s + (−0.556 − 0.154i)6-s + 1.71i·7-s + (−0.724 + 0.688i)8-s − 0.333·9-s + 1.32i·11-s + (−0.297 + 0.495i)12-s − 1.72·13-s + (1.64 + 0.456i)14-s + (0.470 + 0.882i)16-s − 0.746·17-s + (−0.0890 + 0.321i)18-s − 0.461i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.514 - 0.857i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.514 - 0.857i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300\)    =    \(2^{2} \cdot 3 \cdot 5^{2}\)
Sign: $0.514 - 0.857i$
Analytic conductor: \(8.17440\)
Root analytic conductor: \(2.85909\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{300} (151, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 300,\ (\ :1),\ 0.514 - 0.857i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.578818 + 0.327637i\)
\(L(\frac12)\) \(\approx\) \(0.578818 + 0.327637i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.534 + 1.92i)T \)
3 \( 1 + 1.73iT \)
5 \( 1 \)
good7 \( 1 - 11.9iT - 49T^{2} \)
11 \( 1 - 14.5iT - 121T^{2} \)
13 \( 1 + 22.4T + 169T^{2} \)
17 \( 1 + 12.6T + 289T^{2} \)
19 \( 1 + 8.76iT - 361T^{2} \)
23 \( 1 + 4.99iT - 529T^{2} \)
29 \( 1 - 2.74T + 841T^{2} \)
31 \( 1 + 16.3iT - 961T^{2} \)
37 \( 1 + 32.4T + 1.36e3T^{2} \)
41 \( 1 - 42.7T + 1.68e3T^{2} \)
43 \( 1 + 16.5iT - 1.84e3T^{2} \)
47 \( 1 - 48.5iT - 2.20e3T^{2} \)
53 \( 1 + 94.1T + 2.80e3T^{2} \)
59 \( 1 - 43.2iT - 3.48e3T^{2} \)
61 \( 1 - 56.7T + 3.72e3T^{2} \)
67 \( 1 + 61.1iT - 4.48e3T^{2} \)
71 \( 1 - 39.6iT - 5.04e3T^{2} \)
73 \( 1 - 99.5T + 5.32e3T^{2} \)
79 \( 1 + 10.7iT - 6.24e3T^{2} \)
83 \( 1 - 140. iT - 6.88e3T^{2} \)
89 \( 1 - 54.8T + 7.92e3T^{2} \)
97 \( 1 + 14.1T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.06773539146449408280314404648, −10.97658299264792722736373354207, −9.629206514520974168970825992271, −9.213761242826300538678908382873, −7.993351069552853978672975856869, −6.68894590731783161659335857248, −5.39834939600427059425700288060, −4.60687183663531269259304886364, −2.62017442660786249667933183337, −2.09570601888426694511738973610, 0.28110416704837600467560965129, 3.30626747669780039143346428935, 4.30294466501342494385350164379, 5.21923337583290022317815074235, 6.54025788647155060027750472569, 7.41503606794007008738448297981, 8.301058919996048437897794301030, 9.466067542190423014252463341698, 10.28918125965378739032574585000, 11.23747642076455013254457868702

Graph of the $Z$-function along the critical line