L(s) = 1 | + (1.88 + 0.656i)2-s − 1.73i·3-s + (3.13 + 2.48i)4-s + (1.13 − 3.27i)6-s + 9.55i·7-s + (4.29 + 6.74i)8-s − 2.99·9-s + 9.92i·11-s + (4.29 − 5.43i)12-s + 7.55·13-s + (−6.27 + 18.0i)14-s + (3.68 + 15.5i)16-s + 17.1·17-s + (−5.66 − 1.97i)18-s − 26.1i·19-s + ⋯ |
L(s) = 1 | + (0.944 + 0.328i)2-s − 0.577i·3-s + (0.784 + 0.620i)4-s + (0.189 − 0.545i)6-s + 1.36i·7-s + (0.537 + 0.843i)8-s − 0.333·9-s + 0.902i·11-s + (0.358 − 0.452i)12-s + 0.581·13-s + (−0.448 + 1.28i)14-s + (0.230 + 0.973i)16-s + 1.01·17-s + (−0.314 − 0.109i)18-s − 1.37i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.620 - 0.784i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.620 - 0.784i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.62928 + 1.27280i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.62928 + 1.27280i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.88 - 0.656i)T \) |
| 3 | \( 1 + 1.73iT \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 9.55iT - 49T^{2} \) |
| 11 | \( 1 - 9.92iT - 121T^{2} \) |
| 13 | \( 1 - 7.55T + 169T^{2} \) |
| 17 | \( 1 - 17.1T + 289T^{2} \) |
| 19 | \( 1 + 26.1iT - 361T^{2} \) |
| 23 | \( 1 - 1.67iT - 529T^{2} \) |
| 29 | \( 1 - 0.350T + 841T^{2} \) |
| 31 | \( 1 + 46.0iT - 961T^{2} \) |
| 37 | \( 1 - 22.6T + 1.36e3T^{2} \) |
| 41 | \( 1 + 77.2T + 1.68e3T^{2} \) |
| 43 | \( 1 - 41.7iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 14.0iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 22.6T + 2.80e3T^{2} \) |
| 59 | \( 1 + 94.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 38T + 3.72e3T^{2} \) |
| 67 | \( 1 + 29.8iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 7.19iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 34.3T + 5.32e3T^{2} \) |
| 79 | \( 1 + 46.0iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 24.1iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 100.T + 7.92e3T^{2} \) |
| 97 | \( 1 - 131.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.83230105876656713421552427628, −11.26411417077620821270626725977, −9.694669163169853018972948265414, −8.547955596990931889361538350116, −7.63138956578520783404781786355, −6.56839860224949610606867641015, −5.70729861804856575600921689220, −4.72980561476101088613733249221, −3.11295419370734816401541656864, −2.00451979008810136273486252635,
1.19896048520073346350414615201, 3.34198862763657451562741671971, 3.89879478237775251643107594823, 5.19349590739634695545491432332, 6.17971779379195783172526467198, 7.33511735606006500963937598389, 8.503578716577669540626151181945, 10.14027716742491100272486263091, 10.38950350399075773632737275806, 11.37292514546013549917024495082