Properties

Label 2-300-300.47-c2-0-10
Degree $2$
Conductor $300$
Sign $0.640 - 0.767i$
Analytic cond. $8.17440$
Root an. cond. $2.85909$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.250 − 1.98i)2-s + (1.13 − 2.77i)3-s + (−3.87 − 0.995i)4-s + (0.801 + 4.93i)5-s + (−5.22 − 2.95i)6-s + (−6.67 + 6.67i)7-s + (−2.94 + 7.43i)8-s + (−6.41 − 6.31i)9-s + (9.99 − 0.352i)10-s + (−5.11 + 15.7i)11-s + (−7.17 + 9.62i)12-s + (8.85 + 4.51i)13-s + (11.5 + 14.9i)14-s + (14.6 + 3.38i)15-s + (14.0 + 7.71i)16-s + (1.11 − 7.06i)17-s + ⋯
L(s)  = 1  + (0.125 − 0.992i)2-s + (0.379 − 0.925i)3-s + (−0.968 − 0.248i)4-s + (0.160 + 0.987i)5-s + (−0.870 − 0.492i)6-s + (−0.953 + 0.953i)7-s + (−0.368 + 0.929i)8-s + (−0.712 − 0.701i)9-s + (0.999 − 0.0352i)10-s + (−0.465 + 1.43i)11-s + (−0.597 + 0.801i)12-s + (0.680 + 0.346i)13-s + (0.826 + 1.06i)14-s + (0.974 + 0.225i)15-s + (0.876 + 0.482i)16-s + (0.0658 − 0.415i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.640 - 0.767i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.640 - 0.767i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300\)    =    \(2^{2} \cdot 3 \cdot 5^{2}\)
Sign: $0.640 - 0.767i$
Analytic conductor: \(8.17440\)
Root analytic conductor: \(2.85909\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{300} (47, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 300,\ (\ :1),\ 0.640 - 0.767i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.696380 + 0.325905i\)
\(L(\frac12)\) \(\approx\) \(0.696380 + 0.325905i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.250 + 1.98i)T \)
3 \( 1 + (-1.13 + 2.77i)T \)
5 \( 1 + (-0.801 - 4.93i)T \)
good7 \( 1 + (6.67 - 6.67i)T - 49iT^{2} \)
11 \( 1 + (5.11 - 15.7i)T + (-97.8 - 71.1i)T^{2} \)
13 \( 1 + (-8.85 - 4.51i)T + (99.3 + 136. i)T^{2} \)
17 \( 1 + (-1.11 + 7.06i)T + (-274. - 89.3i)T^{2} \)
19 \( 1 + (24.1 - 17.5i)T + (111. - 343. i)T^{2} \)
23 \( 1 + (19.6 + 38.6i)T + (-310. + 427. i)T^{2} \)
29 \( 1 + (12.7 + 9.22i)T + (259. + 799. i)T^{2} \)
31 \( 1 + (-7.41 - 10.1i)T + (-296. + 913. i)T^{2} \)
37 \( 1 + (1.04 - 2.05i)T + (-804. - 1.10e3i)T^{2} \)
41 \( 1 + (-27.5 + 8.95i)T + (1.35e3 - 988. i)T^{2} \)
43 \( 1 + (-27.8 - 27.8i)T + 1.84e3iT^{2} \)
47 \( 1 + (4.51 + 28.5i)T + (-2.10e3 + 682. i)T^{2} \)
53 \( 1 + (-13.0 - 82.2i)T + (-2.67e3 + 868. i)T^{2} \)
59 \( 1 + (17.4 - 5.67i)T + (2.81e3 - 2.04e3i)T^{2} \)
61 \( 1 + (-18.0 + 55.4i)T + (-3.01e3 - 2.18e3i)T^{2} \)
67 \( 1 + (5.85 - 36.9i)T + (-4.26e3 - 1.38e3i)T^{2} \)
71 \( 1 + (11.3 + 8.22i)T + (1.55e3 + 4.79e3i)T^{2} \)
73 \( 1 + (-58.8 - 115. i)T + (-3.13e3 + 4.31e3i)T^{2} \)
79 \( 1 + (24.1 + 17.5i)T + (1.92e3 + 5.93e3i)T^{2} \)
83 \( 1 + (-2.81 + 17.7i)T + (-6.55e3 - 2.12e3i)T^{2} \)
89 \( 1 + (-9.89 + 30.4i)T + (-6.40e3 - 4.65e3i)T^{2} \)
97 \( 1 + (-6.39 - 40.3i)T + (-8.94e3 + 2.90e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.94619081669746305518468682553, −10.70742982383141275670738074370, −9.884813358844249510465849563123, −8.993183333931377714169464310912, −7.943453836374568085806247971791, −6.60241655024898316755219035760, −5.90086785856434590465799132077, −4.04675472340556446859300633762, −2.67514759047437845836280161640, −2.09902838218886378996048459983, 0.32716570918882784164646427204, 3.44211038172956632572783084873, 4.15899672333953839436786803000, 5.45883641178595979077194849921, 6.19315629364656748037692318554, 7.75958858621626809155925962461, 8.547475856151750611235511178238, 9.281452927286116535462031526764, 10.17975427032051894852603528432, 11.15008573187852427092680394463

Graph of the $Z$-function along the critical line