Properties

Label 2-300-300.287-c2-0-86
Degree $2$
Conductor $300$
Sign $-0.795 + 0.605i$
Analytic cond. $8.17440$
Root an. cond. $2.85909$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.84 + 0.760i)2-s + (1.59 − 2.54i)3-s + (2.84 − 2.81i)4-s + (−0.179 + 4.99i)5-s + (−1.01 + 5.91i)6-s + (−8.22 + 8.22i)7-s + (−3.11 + 7.36i)8-s + (−3.91 − 8.10i)9-s + (−3.46 − 9.37i)10-s + (−1.28 − 0.935i)11-s + (−2.62 − 11.7i)12-s + (2.67 − 16.8i)13-s + (8.95 − 21.4i)14-s + (12.4 + 8.42i)15-s + (0.157 − 15.9i)16-s + (−11.2 − 22.1i)17-s + ⋯
L(s)  = 1  + (−0.924 + 0.380i)2-s + (0.531 − 0.847i)3-s + (0.710 − 0.703i)4-s + (−0.0359 + 0.999i)5-s + (−0.169 + 0.985i)6-s + (−1.17 + 1.17i)7-s + (−0.389 + 0.921i)8-s + (−0.435 − 0.900i)9-s + (−0.346 − 0.937i)10-s + (−0.117 − 0.0850i)11-s + (−0.218 − 0.975i)12-s + (0.205 − 1.29i)13-s + (0.639 − 1.53i)14-s + (0.827 + 0.561i)15-s + (0.00987 − 0.999i)16-s + (−0.663 − 1.30i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.795 + 0.605i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.795 + 0.605i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300\)    =    \(2^{2} \cdot 3 \cdot 5^{2}\)
Sign: $-0.795 + 0.605i$
Analytic conductor: \(8.17440\)
Root analytic conductor: \(2.85909\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{300} (287, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 300,\ (\ :1),\ -0.795 + 0.605i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.0924088 - 0.273813i\)
\(L(\frac12)\) \(\approx\) \(0.0924088 - 0.273813i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.84 - 0.760i)T \)
3 \( 1 + (-1.59 + 2.54i)T \)
5 \( 1 + (0.179 - 4.99i)T \)
good7 \( 1 + (8.22 - 8.22i)T - 49iT^{2} \)
11 \( 1 + (1.28 + 0.935i)T + (37.3 + 115. i)T^{2} \)
13 \( 1 + (-2.67 + 16.8i)T + (-160. - 52.2i)T^{2} \)
17 \( 1 + (11.2 + 22.1i)T + (-169. + 233. i)T^{2} \)
19 \( 1 + (-3.50 + 10.7i)T + (-292. - 212. i)T^{2} \)
23 \( 1 + (31.9 - 5.05i)T + (503. - 163. i)T^{2} \)
29 \( 1 + (10.1 + 31.3i)T + (-680. + 494. i)T^{2} \)
31 \( 1 + (10.4 + 3.38i)T + (777. + 564. i)T^{2} \)
37 \( 1 + (-32.8 - 5.21i)T + (1.30e3 + 423. i)T^{2} \)
41 \( 1 + (-10.7 - 14.7i)T + (-519. + 1.59e3i)T^{2} \)
43 \( 1 + (-14.1 - 14.1i)T + 1.84e3iT^{2} \)
47 \( 1 + (33.4 - 65.6i)T + (-1.29e3 - 1.78e3i)T^{2} \)
53 \( 1 + (9.37 - 18.3i)T + (-1.65e3 - 2.27e3i)T^{2} \)
59 \( 1 + (31.1 + 42.8i)T + (-1.07e3 + 3.31e3i)T^{2} \)
61 \( 1 + (-63.9 - 46.4i)T + (1.14e3 + 3.53e3i)T^{2} \)
67 \( 1 + (31.0 + 60.9i)T + (-2.63e3 + 3.63e3i)T^{2} \)
71 \( 1 + (26.1 + 80.5i)T + (-4.07e3 + 2.96e3i)T^{2} \)
73 \( 1 + (127. - 20.1i)T + (5.06e3 - 1.64e3i)T^{2} \)
79 \( 1 + (-32.1 - 98.9i)T + (-5.04e3 + 3.66e3i)T^{2} \)
83 \( 1 + (-32.0 - 62.9i)T + (-4.04e3 + 5.57e3i)T^{2} \)
89 \( 1 + (-2.59 - 1.88i)T + (2.44e3 + 7.53e3i)T^{2} \)
97 \( 1 + (15.6 - 30.7i)T + (-5.53e3 - 7.61e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.15224450848919049536591459372, −9.792384994056945307858102520781, −9.332473594590873520528120877219, −8.133729762396983136500087471447, −7.40034886093989084348480772098, −6.32272858686819643286462365834, −5.84766677940737081692968624425, −3.01016626350021073988507219386, −2.44494402441120583724571794836, −0.16379035995145319156723438078, 1.82735204262800496656727334254, 3.69406769627581500730565065672, 4.19265194095521544721080032812, 6.14553839321069276897142315942, 7.36753546600109632401138276243, 8.456332600283378325724609413749, 9.143689501602628885354561046753, 9.977652688276533525804157222688, 10.53962500536829963998401124313, 11.67905371336515795691550947488

Graph of the $Z$-function along the critical line