Properties

Label 2-300-3.2-c2-0-3
Degree $2$
Conductor $300$
Sign $1$
Analytic cond. $8.17440$
Root an. cond. $2.85909$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 13·7-s + 9·9-s + 23·13-s + 11·19-s + 39·21-s − 27·27-s + 59·31-s + 26·37-s − 69·39-s + 83·43-s + 120·49-s − 33·57-s − 121·61-s − 117·63-s − 13·67-s − 46·73-s − 142·79-s + 81·81-s − 299·91-s − 177·93-s + 167·97-s + 194·103-s + 71·109-s − 78·111-s + 207·117-s + ⋯
L(s)  = 1  − 3-s − 1.85·7-s + 9-s + 1.76·13-s + 0.578·19-s + 13/7·21-s − 27-s + 1.90·31-s + 0.702·37-s − 1.76·39-s + 1.93·43-s + 2.44·49-s − 0.578·57-s − 1.98·61-s − 1.85·63-s − 0.194·67-s − 0.630·73-s − 1.79·79-s + 81-s − 3.28·91-s − 1.90·93-s + 1.72·97-s + 1.88·103-s + 0.651·109-s − 0.702·111-s + 1.76·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300\)    =    \(2^{2} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(8.17440\)
Root analytic conductor: \(2.85909\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: $\chi_{300} (101, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 300,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.9663067079\)
\(L(\frac12)\) \(\approx\) \(0.9663067079\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 \)
good7 \( 1 + 13 T + p^{2} T^{2} \)
11 \( ( 1 - p T )( 1 + p T ) \)
13 \( 1 - 23 T + p^{2} T^{2} \)
17 \( ( 1 - p T )( 1 + p T ) \)
19 \( 1 - 11 T + p^{2} T^{2} \)
23 \( ( 1 - p T )( 1 + p T ) \)
29 \( ( 1 - p T )( 1 + p T ) \)
31 \( 1 - 59 T + p^{2} T^{2} \)
37 \( 1 - 26 T + p^{2} T^{2} \)
41 \( ( 1 - p T )( 1 + p T ) \)
43 \( 1 - 83 T + p^{2} T^{2} \)
47 \( ( 1 - p T )( 1 + p T ) \)
53 \( ( 1 - p T )( 1 + p T ) \)
59 \( ( 1 - p T )( 1 + p T ) \)
61 \( 1 + 121 T + p^{2} T^{2} \)
67 \( 1 + 13 T + p^{2} T^{2} \)
71 \( ( 1 - p T )( 1 + p T ) \)
73 \( 1 + 46 T + p^{2} T^{2} \)
79 \( 1 + 142 T + p^{2} T^{2} \)
83 \( ( 1 - p T )( 1 + p T ) \)
89 \( ( 1 - p T )( 1 + p T ) \)
97 \( 1 - 167 T + p^{2} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.52592871079486147166637077001, −10.56662300114940408426883267903, −9.820531743943303381422434820097, −8.882501278770745691691397161970, −7.39245721100830405246376298066, −6.22245941391036384799039133750, −5.99826396017854960900164801805, −4.28981463189683065730968820196, −3.14652246813837520275847539877, −0.854039538526559894254307362633, 0.854039538526559894254307362633, 3.14652246813837520275847539877, 4.28981463189683065730968820196, 5.99826396017854960900164801805, 6.22245941391036384799039133750, 7.39245721100830405246376298066, 8.882501278770745691691397161970, 9.820531743943303381422434820097, 10.56662300114940408426883267903, 11.52592871079486147166637077001

Graph of the $Z$-function along the critical line