Properties

Label 2-300-3.2-c0-0-0
Degree $2$
Conductor $300$
Sign $1$
Analytic cond. $0.149719$
Root an. cond. $0.386936$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s + 13-s − 19-s − 21-s − 27-s − 31-s − 2·37-s − 39-s + 43-s + 57-s − 61-s + 63-s + 67-s − 2·73-s + 2·79-s + 81-s + 91-s + 93-s + 97-s − 2·103-s − 109-s + 2·111-s + 117-s + ⋯
L(s)  = 1  − 3-s + 7-s + 9-s + 13-s − 19-s − 21-s − 27-s − 31-s − 2·37-s − 39-s + 43-s + 57-s − 61-s + 63-s + 67-s − 2·73-s + 2·79-s + 81-s + 91-s + 93-s + 97-s − 2·103-s − 109-s + 2·111-s + 117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300\)    =    \(2^{2} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(0.149719\)
Root analytic conductor: \(0.386936\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{300} (101, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 300,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6532992219\)
\(L(\frac12)\) \(\approx\) \(0.6532992219\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
good7 \( 1 - T + T^{2} \)
11 \( ( 1 - T )( 1 + T ) \)
13 \( 1 - T + T^{2} \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( 1 + T + T^{2} \)
23 \( ( 1 - T )( 1 + T ) \)
29 \( ( 1 - T )( 1 + T ) \)
31 \( 1 + T + T^{2} \)
37 \( ( 1 + T )^{2} \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( 1 - T + T^{2} \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( ( 1 - T )( 1 + T ) \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( 1 + T + T^{2} \)
67 \( 1 - T + T^{2} \)
71 \( ( 1 - T )( 1 + T ) \)
73 \( ( 1 + T )^{2} \)
79 \( ( 1 - T )^{2} \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( 1 - T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.86043896787044078514714658870, −10.93922014141176463092218787469, −10.55112336478754415447079823366, −9.123962078617479028552404123501, −8.118040181241947617929690191827, −6.99886877428203207051998883876, −5.95821846262433145702348962949, −4.99401846089250571451850638538, −3.90660080233406067502921605051, −1.68424814305526199645363431078, 1.68424814305526199645363431078, 3.90660080233406067502921605051, 4.99401846089250571451850638538, 5.95821846262433145702348962949, 6.99886877428203207051998883876, 8.118040181241947617929690191827, 9.123962078617479028552404123501, 10.55112336478754415447079823366, 10.93922014141176463092218787469, 11.86043896787044078514714658870

Graph of the $Z$-function along the critical line