Properties

Label 2-300-25.6-c1-0-0
Degree $2$
Conductor $300$
Sign $0.699 - 0.714i$
Analytic cond. $2.39551$
Root an. cond. $1.54774$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.809 + 0.587i)3-s + (2.04 + 0.909i)5-s + 0.747·7-s + (0.309 − 0.951i)9-s + (0.0646 + 0.198i)11-s + (−0.773 + 2.38i)13-s + (−2.18 + 0.464i)15-s + (5.51 + 4.00i)17-s + (−1.00 − 0.731i)19-s + (−0.604 + 0.439i)21-s + (1.00 + 3.09i)23-s + (3.34 + 3.71i)25-s + (0.309 + 0.951i)27-s + (4.19 − 3.04i)29-s + (−3.02 − 2.19i)31-s + ⋯
L(s)  = 1  + (−0.467 + 0.339i)3-s + (0.913 + 0.406i)5-s + 0.282·7-s + (0.103 − 0.317i)9-s + (0.0194 + 0.0599i)11-s + (−0.214 + 0.660i)13-s + (−0.564 + 0.120i)15-s + (1.33 + 0.972i)17-s + (−0.231 − 0.167i)19-s + (−0.131 + 0.0958i)21-s + (0.209 + 0.644i)23-s + (0.669 + 0.743i)25-s + (0.0594 + 0.183i)27-s + (0.778 − 0.565i)29-s + (−0.543 − 0.394i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.699 - 0.714i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.699 - 0.714i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300\)    =    \(2^{2} \cdot 3 \cdot 5^{2}\)
Sign: $0.699 - 0.714i$
Analytic conductor: \(2.39551\)
Root analytic conductor: \(1.54774\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{300} (181, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 300,\ (\ :1/2),\ 0.699 - 0.714i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.22455 + 0.514754i\)
\(L(\frac12)\) \(\approx\) \(1.22455 + 0.514754i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.809 - 0.587i)T \)
5 \( 1 + (-2.04 - 0.909i)T \)
good7 \( 1 - 0.747T + 7T^{2} \)
11 \( 1 + (-0.0646 - 0.198i)T + (-8.89 + 6.46i)T^{2} \)
13 \( 1 + (0.773 - 2.38i)T + (-10.5 - 7.64i)T^{2} \)
17 \( 1 + (-5.51 - 4.00i)T + (5.25 + 16.1i)T^{2} \)
19 \( 1 + (1.00 + 0.731i)T + (5.87 + 18.0i)T^{2} \)
23 \( 1 + (-1.00 - 3.09i)T + (-18.6 + 13.5i)T^{2} \)
29 \( 1 + (-4.19 + 3.04i)T + (8.96 - 27.5i)T^{2} \)
31 \( 1 + (3.02 + 2.19i)T + (9.57 + 29.4i)T^{2} \)
37 \( 1 + (-0.607 + 1.86i)T + (-29.9 - 21.7i)T^{2} \)
41 \( 1 + (-0.993 + 3.05i)T + (-33.1 - 24.0i)T^{2} \)
43 \( 1 + 12.7T + 43T^{2} \)
47 \( 1 + (-5.24 + 3.81i)T + (14.5 - 44.6i)T^{2} \)
53 \( 1 + (3.35 - 2.43i)T + (16.3 - 50.4i)T^{2} \)
59 \( 1 + (-3.61 + 11.1i)T + (-47.7 - 34.6i)T^{2} \)
61 \( 1 + (3.85 + 11.8i)T + (-49.3 + 35.8i)T^{2} \)
67 \( 1 + (2.35 + 1.71i)T + (20.7 + 63.7i)T^{2} \)
71 \( 1 + (5.29 - 3.85i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (0.778 + 2.39i)T + (-59.0 + 42.9i)T^{2} \)
79 \( 1 + (-8.28 + 6.02i)T + (24.4 - 75.1i)T^{2} \)
83 \( 1 + (-4.59 - 3.33i)T + (25.6 + 78.9i)T^{2} \)
89 \( 1 + (0.284 + 0.876i)T + (-72.0 + 52.3i)T^{2} \)
97 \( 1 + (-12.5 + 9.13i)T + (29.9 - 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.76302094595952965535139037937, −10.83368620541611594888499315154, −10.02741851376170728570092127554, −9.315040673708826511051237012177, −8.029167243565795665860029948267, −6.78435835930095847033835667391, −5.88650912630169539830950299606, −4.92604053570603960784421293138, −3.48931671844367102238583722718, −1.79397027610451142920268268071, 1.23198642295838561295038337509, 2.87989761038925967401245941719, 4.83003744634610638714514718882, 5.55124303368304231717163739884, 6.61900207027993382267166696958, 7.75356742277304534176730700084, 8.782266349037468392374329405340, 9.917180258399137693532960178877, 10.55864153635753311223659151493, 11.79395889091470212474639251377

Graph of the $Z$-function along the critical line