L(s) = 1 | + (0.809 + 0.587i)3-s + (1.99 + 1.00i)5-s − 0.0883·7-s + (0.309 + 0.951i)9-s + (0.701 − 2.15i)11-s + (0.819 + 2.52i)13-s + (1.02 + 1.98i)15-s + (−1.68 + 1.22i)17-s + (−1.42 + 1.03i)19-s + (−0.0714 − 0.0519i)21-s + (1.46 − 4.50i)23-s + (2.98 + 4.00i)25-s + (−0.309 + 0.951i)27-s + (−2.99 − 2.17i)29-s + (3.32 − 2.41i)31-s + ⋯ |
L(s) = 1 | + (0.467 + 0.339i)3-s + (0.893 + 0.448i)5-s − 0.0333·7-s + (0.103 + 0.317i)9-s + (0.211 − 0.650i)11-s + (0.227 + 0.699i)13-s + (0.265 + 0.512i)15-s + (−0.409 + 0.297i)17-s + (−0.326 + 0.237i)19-s + (−0.0155 − 0.0113i)21-s + (0.305 − 0.940i)23-s + (0.597 + 0.801i)25-s + (−0.0594 + 0.183i)27-s + (−0.556 − 0.404i)29-s + (0.596 − 0.433i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.837 - 0.546i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.837 - 0.546i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.62459 + 0.482761i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.62459 + 0.482761i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 5 | \( 1 + (-1.99 - 1.00i)T \) |
good | 7 | \( 1 + 0.0883T + 7T^{2} \) |
| 11 | \( 1 + (-0.701 + 2.15i)T + (-8.89 - 6.46i)T^{2} \) |
| 13 | \( 1 + (-0.819 - 2.52i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (1.68 - 1.22i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.42 - 1.03i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (-1.46 + 4.50i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (2.99 + 2.17i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-3.32 + 2.41i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.19 - 6.77i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (2.03 + 6.26i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 1.79T + 43T^{2} \) |
| 47 | \( 1 + (8.17 + 5.94i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-0.777 - 0.565i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (2.77 + 8.53i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-2.92 + 9.00i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + (11.2 - 8.17i)T + (20.7 - 63.7i)T^{2} \) |
| 71 | \( 1 + (4.97 + 3.61i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (0.975 - 3.00i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (10.8 + 7.84i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-12.7 + 9.29i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + (3.16 - 9.74i)T + (-72.0 - 52.3i)T^{2} \) |
| 97 | \( 1 + (-10.3 - 7.52i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.64880004008205842035894678374, −10.76933683734906332987525722836, −9.933552620499364648618343679506, −9.052798021606660853530913945967, −8.225155488055113601146561016220, −6.77870076065054155968775090938, −6.02155833461882433970490822314, −4.62882013492822122160086438804, −3.30966819492146361550953339878, −1.99150017254603040029405385034,
1.53963131806076570823056915314, 2.92355213689828465024673889288, 4.54513802939548934376194359505, 5.71318989296061793644711946048, 6.78479324261527201986077635806, 7.85467783586010133907018045986, 8.953232727197257464488298305437, 9.596969116724887425795775344108, 10.59617637267028517456033248324, 11.77432616850038955607264082644