Properties

Label 2-300-20.7-c1-0-0
Degree $2$
Conductor $300$
Sign $-0.923 + 0.382i$
Analytic cond. $2.39551$
Root an. cond. $1.54774$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 1.22i)2-s + (−0.707 − 0.707i)3-s + (−0.999 − 1.73i)4-s + (1.36 − 0.366i)6-s + (−1.74 + 1.74i)7-s + 2.82·8-s + 1.00i·9-s − 2i·11-s + (−0.517 + 1.93i)12-s + (−4.05 + 4.05i)13-s + (−0.901 − 3.36i)14-s + (−2.00 + 3.46i)16-s + (−4.24 − 4.24i)17-s + (−1.22 − 0.707i)18-s − 7.19·19-s + ⋯
L(s)  = 1  + (−0.499 + 0.866i)2-s + (−0.408 − 0.408i)3-s + (−0.499 − 0.866i)4-s + (0.557 − 0.149i)6-s + (−0.658 + 0.658i)7-s + 0.999·8-s + 0.333i·9-s − 0.603i·11-s + (−0.149 + 0.557i)12-s + (−1.12 + 1.12i)13-s + (−0.241 − 0.899i)14-s + (−0.500 + 0.866i)16-s + (−1.02 − 1.02i)17-s + (−0.288 − 0.166i)18-s − 1.65·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.923 + 0.382i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300\)    =    \(2^{2} \cdot 3 \cdot 5^{2}\)
Sign: $-0.923 + 0.382i$
Analytic conductor: \(2.39551\)
Root analytic conductor: \(1.54774\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{300} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 300,\ (\ :1/2),\ -0.923 + 0.382i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0197615 - 0.0994116i\)
\(L(\frac12)\) \(\approx\) \(0.0197615 - 0.0994116i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.707 - 1.22i)T \)
3 \( 1 + (0.707 + 0.707i)T \)
5 \( 1 \)
good7 \( 1 + (1.74 - 1.74i)T - 7iT^{2} \)
11 \( 1 + 2iT - 11T^{2} \)
13 \( 1 + (4.05 - 4.05i)T - 13iT^{2} \)
17 \( 1 + (4.24 + 4.24i)T + 17iT^{2} \)
19 \( 1 + 7.19T + 19T^{2} \)
23 \( 1 + (0.378 + 0.378i)T + 23iT^{2} \)
29 \( 1 - 7.46iT - 29T^{2} \)
31 \( 1 + 0.267iT - 31T^{2} \)
37 \( 1 + (2.07 + 2.07i)T + 37iT^{2} \)
41 \( 1 + 5.46T + 41T^{2} \)
43 \( 1 + (-1.74 - 1.74i)T + 43iT^{2} \)
47 \( 1 + (-9.14 + 9.14i)T - 47iT^{2} \)
53 \( 1 + (1.03 - 1.03i)T - 53iT^{2} \)
59 \( 1 - 4.53T + 59T^{2} \)
61 \( 1 - 3T + 61T^{2} \)
67 \( 1 + (8.81 - 8.81i)T - 67iT^{2} \)
71 \( 1 - 9.46iT - 71T^{2} \)
73 \( 1 + (-2.82 + 2.82i)T - 73iT^{2} \)
79 \( 1 + 0.535T + 79T^{2} \)
83 \( 1 + (0.656 + 0.656i)T + 83iT^{2} \)
89 \( 1 + 6.92iT - 89T^{2} \)
97 \( 1 + (-4.43 - 4.43i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.29192440528789444229604017585, −11.26745644768735622696166120472, −10.26255779678570907211582791729, −9.123704856185168272258590071244, −8.636132729265639890776416227880, −7.11228189688458920285420090376, −6.65491029584522717293371731899, −5.56987924168041338695389283063, −4.47427741858996139811691191966, −2.25556464027707890346442398374, 0.085887207855476897652543601301, 2.33696543314545808332484879466, 3.84293031434998627054576700185, 4.70488089812656058169457790238, 6.34309904609486027778129801925, 7.49533897387227842140351548008, 8.562010005452052408090871919457, 9.707586722525360959071960892808, 10.34483261619798458985501369462, 10.88933254014640328776370847802

Graph of the $Z$-function along the critical line