Properties

Label 2-300-20.19-c2-0-28
Degree $2$
Conductor $300$
Sign $-0.0218 + 0.999i$
Analytic cond. $8.17440$
Root an. cond. $2.85909$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.95 + 0.438i)2-s + 1.73·3-s + (3.61 − 1.71i)4-s + (−3.37 + 0.758i)6-s − 6.33·7-s + (−6.30 + 4.92i)8-s + 2.99·9-s − 9.27i·11-s + (6.26 − 2.96i)12-s − 18.5i·13-s + (12.3 − 2.77i)14-s + (10.1 − 12.3i)16-s + 13.9i·17-s + (−5.85 + 1.31i)18-s − 17.2i·19-s + ⋯
L(s)  = 1  + (−0.975 + 0.219i)2-s + 0.577·3-s + (0.904 − 0.427i)4-s + (−0.563 + 0.126i)6-s − 0.904·7-s + (−0.788 + 0.615i)8-s + 0.333·9-s − 0.843i·11-s + (0.521 − 0.246i)12-s − 1.42i·13-s + (0.882 − 0.198i)14-s + (0.634 − 0.772i)16-s + 0.818i·17-s + (−0.325 + 0.0730i)18-s − 0.907i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0218 + 0.999i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0218 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300\)    =    \(2^{2} \cdot 3 \cdot 5^{2}\)
Sign: $-0.0218 + 0.999i$
Analytic conductor: \(8.17440\)
Root analytic conductor: \(2.85909\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{300} (199, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 300,\ (\ :1),\ -0.0218 + 0.999i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.581499 - 0.594371i\)
\(L(\frac12)\) \(\approx\) \(0.581499 - 0.594371i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.95 - 0.438i)T \)
3 \( 1 - 1.73T \)
5 \( 1 \)
good7 \( 1 + 6.33T + 49T^{2} \)
11 \( 1 + 9.27iT - 121T^{2} \)
13 \( 1 + 18.5iT - 169T^{2} \)
17 \( 1 - 13.9iT - 289T^{2} \)
19 \( 1 + 17.2iT - 361T^{2} \)
23 \( 1 + 33.7T + 529T^{2} \)
29 \( 1 - 28.6T + 841T^{2} \)
31 \( 1 + 23.4iT - 961T^{2} \)
37 \( 1 + 67.3iT - 1.36e3T^{2} \)
41 \( 1 + 44.0T + 1.68e3T^{2} \)
43 \( 1 - 50.2T + 1.84e3T^{2} \)
47 \( 1 - 31.1T + 2.20e3T^{2} \)
53 \( 1 + 81.6iT - 2.80e3T^{2} \)
59 \( 1 - 19.2iT - 3.48e3T^{2} \)
61 \( 1 + 53.1T + 3.72e3T^{2} \)
67 \( 1 - 4.49T + 4.48e3T^{2} \)
71 \( 1 + 13.3iT - 5.04e3T^{2} \)
73 \( 1 + 40.8iT - 5.32e3T^{2} \)
79 \( 1 - 141. iT - 6.24e3T^{2} \)
83 \( 1 - 69.8T + 6.88e3T^{2} \)
89 \( 1 - 46.3T + 7.92e3T^{2} \)
97 \( 1 - 68.5iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.88523166277178538396268508193, −10.21991831666753379369732871852, −9.333840435813151599568543154213, −8.407287686773347420665588364181, −7.71762244516436385271033825525, −6.48421220925715521436422110294, −5.64947707276177460625775277844, −3.58653258337369377926184318181, −2.46768337788018379203128083792, −0.49912882759719528029302456955, 1.72679125243687387077968248699, 2.99493642534246269967281113579, 4.29776640809274763660449023949, 6.30654625649469566787785056357, 7.05159832162769833148412211187, 8.067439194830436651972481234843, 9.118098135074972095803551160485, 9.758484108314535543596693555316, 10.43101304267244055697602033269, 11.96625991167361401094566106853

Graph of the $Z$-function along the critical line